首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9221篇
  免费   603篇
  国内免费   13篇
  2023年   25篇
  2022年   110篇
  2021年   187篇
  2020年   106篇
  2019年   144篇
  2018年   208篇
  2017年   188篇
  2016年   322篇
  2015年   508篇
  2014年   628篇
  2013年   668篇
  2012年   767篇
  2011年   713篇
  2010年   440篇
  2009年   395篇
  2008年   559篇
  2007年   543篇
  2006年   505篇
  2005年   460篇
  2004年   419篇
  2003年   362篇
  2002年   321篇
  2001年   200篇
  2000年   181篇
  1999年   128篇
  1998年   63篇
  1997年   45篇
  1996年   45篇
  1995年   52篇
  1994年   31篇
  1993年   21篇
  1992年   61篇
  1991年   35篇
  1990年   40篇
  1989年   38篇
  1988年   33篇
  1987年   25篇
  1986年   20篇
  1985年   27篇
  1984年   23篇
  1983年   15篇
  1982年   18篇
  1981年   10篇
  1979年   22篇
  1978年   15篇
  1977年   9篇
  1976年   9篇
  1974年   14篇
  1973年   14篇
  1972年   9篇
排序方式: 共有9837条查询结果,搜索用时 31 毫秒
191.
Entamoeba histolytica, which causes amoebic colitis and occasionally liver abscess in humans, is able to induce host cell death. However, signaling mechanisms of colon cell death induced by E. histolytica are not fully elucidated. In this study, we investigated the signaling role of NOX in cell death of HT29 colonic epithelial cells induced by E. histolytica. Incubation of HT29 cells with amoebic trophozoites resulted in DNA fragmentation that is a hallmark of apoptotic cell death. In addition, E. histolytica generate intracellular reactive oxygen species (ROS) in a contact-dependent manner. Inhibition of intracellular ROS level with treatment with DPI, an inhibitor of NADPH oxidases (NOXs), decreased Entamoeba-induced ROS generation and cell death in HT29 cells. However, pan-caspase inhibitor did not affect E. histolytica-induced HT29 cell death. In HT29 cells, catalytic subunit NOX1 and regulatory subunit Rac1 for NOX1 activation were highly expressed. We next investigated whether NADPH oxidase 1 (NOX1)-derived ROS is closely associated with HT29 cell death induced by E. histolytica. Suppression of Rac1 by siRNA significantly inhibited Entamoeba-induced cell death. Moreover, knockdown of NOX1 by siRNA, effectively inhibited E. histolytica-triggered DNA fragmentation in HT29 cells. These results suggest that NOX1-derived ROS is required for apoptotic cell death in HT29 colon epithelial cells induced by E. histolytica.  相似文献   
192.
Recombinant Escherichia coli, expressing the oleate hydratase gene of Stenotrophomonas maltophilia, was permeabilized by sequential treatments with 0.125 M NaCl and 2 mM EDTA. The optimal conditions for the production of 10-hydroxy-12,15(Z,Z)-octadecadienoic acid from α-linolenic acid by permeabilized cells were 35 °C and pH 7.0 with 0.1 % (v/v) Tween 40, 50 g permeabilized cells l?1, and 17.5 g α-linolenic acid l?1. Under these conditions, permeabilized cells produced 14.3 g 10-hydroxy-12,15(Z,Z)-octadecadienoic acid l?1 after 18 h, with a conversion yield of 82 % (g/g) and a volumetric productivity of 0.79 g l?1 h?1. These values were 17 and 168 % higher than those obtained by nonpermeabilized cells, respectively. The concentration, yield, and productivity of 10-hydroxy-12,15(Z,Z)-octadecadienoic acid obtained by permeabilized cells are the highest reported thus far.  相似文献   
193.
Titanium dioxide nanoparticles (nano-TiO2) are manufactured and used worldwide in large quantities. However, phytotoxicity research on nano-TiO2 has yielded confusing results, ranging from strong toxicity to positive effects. Therefore, in this research, the effects of nano-TiO2 on the germination and root elongation of seed and seedlings were studied. Additionally, the uptake and physiological responses of mature plants were investigated. Physical chemistry data were analyzed to assess the availability of nano-TiO2. Finally, a hydroponic system designed to overcome nano-TiO2 precipitation was used to reproduce the environmental conditions of actual fields. Nano-TiO2 did not have any effect on seed germination or on most of the plant species tested. Nano-TiO2 had positive effects on root elongation in some species. No physiological differences in enzyme activities or chlorophyll content were detected, even though the plants absorbed nano-TiO2. Physical chemistry data showed that nano-TiO2 agglomerated rapidly and formed particles with much bigger hydrodynamic diameters, even in distilled water and especially in a hydroponic system. Furthermore, agglomerated nano-TiO2 formed precipitates; this would be more severe in an actual field. Consequently, nano-TiO2 would not be also readily available to plants and would not cause any significant effects on plants. Our results and other reports suggest that titanium itself is not phytotoxic, even though plants absorb titanium. In conclusion, nano-TiO2 is not toxic to the three plant species, in vitro or in situ.  相似文献   
194.
195.
Invasive ductal adenocarcinoma (IDA) of the pancreas manifests poor prognosis due to the early invasion and distant metastasis. In contrast, intraductal papillary mucinous adenoma or carcinoma (IPMA or IPMC) reveals better clinical outcomes. Various molecular mechanisms contribute to these differences but entire picture is still unclear. Recent researches emphasized the important role of miRNA in biological processes including cancer invasion and metastasis. We previously described that miR‐126 is down‐regulated in IDA compared with IPMA or IPMC, and miR‐126 regulates the expression of invasion related molecule disintegrin and metalloproteinase domain‐containing protein 9 (ADAM9). Assessing the difference of miRNA expression profiles of IDA, IPMA, and IPMC, we newly identified miR‐197 as an up‐regulated miRNA specifically in IDA. Expression of miR‐197 in pancreatic cancer cells resulted in the induction of epithelial–mesenchymal transition (EMT) along with the down‐regulation of p120 catenin which is a putative target of miR‐197. Direct interaction between miR‐197 and p120 catenin mRNA sequence was confirmed by 3′UTR assay, and knockdown of p120 catenin recapitulated EMT induction in pancreatic cancer cells. In situ hybridization of miR‐197 and immunohistochemistry of p120 catenin showed mutually exclusive patterns suggesting pivotal role of miR‐197 in the regulation of p120 catenin. This miR‐197/p120 catenin axis could be a novel therapeutic target. J. Cell. Physiol. 228: 1255–1263, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
196.
Radioresistance is a major cause of decreasing the efficiency of radiotherapy for non-small cell lung cancer (NSCLC). To understand the radioresistance mechanisms in NSCLC, we focused on the radiation-induced Notch-1 signaling pathway involved in critical cell fate decisions by modulating cell proliferation. In this study, we investigated the use of Notch-1-regulating flavonoid compounds as novel therapeutic drugs to regulate radiosensitivity in NSCLC cells, NCI-H1299 and NCI-H460, with different levels of radioresistance. Rhamnetin and cirsiliol were selected as candidate Notch-1-regulating radiosensitizers based on the results of assay screening for activity and pharmacological properties. Treatment with rhamnetin or cirsiliol reduced the proliferation of NSCLC cells through the suppression of radiation-induced Notch-1 expression. Indeed, rhamnetin and cirsiliol increased the expression of tumor-suppressive microRNA, miR-34a, in a p53-dependent manner, leading to inhibition of Notch-1 expression. Consequently, reduced Notch-1 expression promoted apoptosis through significant down-regulation of the nuclear factor-κB pathway, resulting in a radiosensitizing effect on NSCLC cells. Irradiation-induced epithelial-mesenchymal transition was also notably attenuated in the presence of rhamnetin and cirsiliol. Moreover, an in vivo xenograft mouse model confirmed the radiosensitizing and epithelial-mesenchymal transition inhibition effects of rhamnetin and cirsiliol we observed in vitro. In these mice, tumor volume was significantly reduced by combinational treatment with irradiation and rhamnetin or cirsiliol compared with irradiation alone. Taken together, our findings provided evidence that rhamnetin and cirsiliol can act as promising radiosensitizers that enhance the radiotherapeutic efficacy by inhibiting radiation-induced Notch-1 signaling associated with radioresistance possibly via miR-34a-mediated pathways.  相似文献   
197.
The photosynthetic euglenoid genus Cryptoglena is differentiated from other euglenoid genera by having a longitudinal sulcus, one chloroplast, two large trough‐shaped paramylon plates positioned between the chloroplast and pellicle, and lack of metaboly. The genus contains only two species. To understand genetic diversity and taxonomy of Cryptoglena species, we analyzed molecular and morphological data from 25 strains. A combined data set of nuclear SSU and LSU and plastid SSU and LSU rRNA genes was analyzed using Bayesian, maximum likelihood, maximum parsimony, and distance (neighbor joining) methods. Although morphological data of all strains showed no significant species‐specific pattern, molecular data segregated the taxa into five clades, two of which represented previously known species: C. skujae and C. pigra, and three of which were designated as the new species, C. soropigra, C. similis, and C. longisulca. Each species had unique molecular signatures that could be found in the plastid SSU rRNA Helix P23_1 and LSU rRNA H2 domain. The genetic similarity of intraspecies based on nr SSU rDNA ranged from 97.8% to 100% and interspecies ranged from 95.3% to 98.9%. Therefore, we propose three new species based on specific molecular signatures and gene divergence of the nr SSU rDNA sequences.  相似文献   
198.
Carbonic anhydrase is an enzyme that reversibly catalyzes the hydration of carbon dioxide (CO2). It has been suggested recently that this remarkably fast enzyme can be used for sequestration of CO2, a major greenhouse gas, making this a promising alternative for chemical CO2 mitigation. To promote the economical use of enzymes, we engineered the carbonic anhydrase from Neisseria gonorrhoeae (ngCA) in the periplasm of Escherichia coli, thereby creating a bacterial whole-cell catalyst. We then investigated the application of this system to CO2 sequestration by mineral carbonation, a process with the potential to store large quantities of CO2. ngCA was highly expressed in the periplasm of E. coli in a soluble form, and the recombinant bacterial cell displayed the distinct ability to hydrate CO2 compared with its cytoplasmic ngCA counterpart and previously reported whole-cell CA systems. The expression of ngCA in the periplasm of E. coli greatly accelerated the rate of calcium carbonate (CaCO3) formation and exerted a striking impact on the maximal amount of CaCO3 produced under conditions of relatively low pH. It was also shown that the thermal stability of the periplasmic enzyme was significantly improved. These results demonstrate that the engineered bacterial cell with periplasmic ngCA can successfully serve as an efficient biocatalyst for CO2 sequestration.  相似文献   
199.
Expression plasmids carrying different deoxysugar biosynthetic gene cassettes and the gene encoding a substrate-flexible glycosyltransferase DesVII were constructed and introduced into Streptomyces venezuelae YJ003 mutant strain bearing a deletion of a desosamine biosynthetic (des) gene cluster. The resulting recombinants produced macrolide antibiotic YC-17 analogs possessing unnatural sugars replacing native d-desosamine. These metabolites were isolated and further purified using chromatographic techniques and their structures were determined as d-quinovosyl-10-deoxymethynolide, l-rhamnosyl-10-deoxymethynolide, l-olivosyl-10-deoxymethynolide, and d-boivinosyl-10-deoxymethynolide on the basis of 1D and 2D NMR and MS analyses and the stereochemistry of sugars was confirmed using coupling constant values and NOE correlations. Their antibacterial activities were evaluated in vitro against erythromycin-susceptible and -resistant Enterococcus faecium and Staphylococcus aureus. Substitution with l-rhamnose displayed better antibacterial activity than parent compound YC-17 containing native sugar d-desosamine. The present study on relationships between chemical structures and antibacterial activities could be useful in generation of novel advanced antibiotics utilizing combinatorial biosynthesis approach.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号