首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63076篇
  免费   5385篇
  国内免费   63篇
  2023年   187篇
  2022年   331篇
  2021年   1130篇
  2020年   644篇
  2019年   842篇
  2018年   1279篇
  2017年   1033篇
  2016年   1745篇
  2015年   2942篇
  2014年   3233篇
  2013年   3794篇
  2012年   4867篇
  2011年   4663篇
  2010年   2945篇
  2009年   2635篇
  2008年   3763篇
  2007年   3476篇
  2006年   3170篇
  2005年   2880篇
  2004年   2790篇
  2003年   2501篇
  2002年   2160篇
  2001年   1816篇
  2000年   1688篇
  1999年   1341篇
  1998年   596篇
  1997年   533篇
  1996年   449篇
  1995年   458篇
  1994年   348篇
  1993年   347篇
  1992年   724篇
  1991年   589篇
  1990年   551篇
  1989年   552篇
  1988年   481篇
  1987年   465篇
  1986年   381篇
  1985年   402篇
  1984年   322篇
  1983年   267篇
  1982年   223篇
  1981年   179篇
  1980年   190篇
  1979年   268篇
  1978年   239篇
  1977年   209篇
  1976年   211篇
  1974年   227篇
  1972年   179篇
排序方式: 共有10000条查询结果,搜索用时 578 毫秒
71.
Scaffolding proteins are involved in the incorporation, anchoring, maintenance, and removal of AMPA receptors (AMPARs) at synapses, either through a direct interaction with AMPARs or via indirect association through auxiliary subunits of transmembrane AMPAR regulatory proteins (TARPs). Synaptic scaffolding molecule (S-SCAM) is a newly characterized member of the scaffolding proteins critical for the regulation and maintenance of AMPAR levels at synapses, and directly binds to TARPs through a PDZ interaction. However, the functional significance of S-SCAM–TARP interaction in the regulation of AMPARs has not been tested. Here we show that overexpression of the C-terminal peptide of TARP-γ2 fused to EGFP abolished the S-SCAM-mediated enhancement of surface GluA2 expression. Conversely, the deletion of the PDZ-5 domain of S-SCAM that binds TARPs greatly attenuated the S-SCAM-induced increase of surface GluA2 expression. In contrast, the deletion of the guanylate kinase domain of S-SCAM did not show a significant effect on the regulation of AMPARs. Together, these results suggest that S-SCAM is regulating AMPARs through TARPs.  相似文献   
72.
Effect of membrane additives on vesicle fusion   总被引:1,自引:0,他引:1  
A large variety of alkyl derivatives were found to either slow or block the low-temperature induced fusion of dipalmitoylphosphatidylcholine small unilamellar vesicles (DPPC SUV) when incorporated into the SUV bilayer at five mol%. Only corn oil was fusogenic.  相似文献   
73.
74.

Background

Eosinophilia plays the major role in the pathogenesis of asthma and correlates with the up‐regulation of eotaxin, which, together with interleukin (IL)‐5, is important for differentiation, chemo‐attraction, degranulation, and survival of eosinophils in local tissue. In a previous study, we found that administration of lentivirus‐delivered short hairpin RNA (shRNA) to suppress the expression of IL‐5 inhibited airway inflammation. The present study aimed to investigate the role of eotaxin shRNA and the synergistic effect of eotaxin and IL‐5 shRNAs on airway inflammation in an ovalbumin (OVA)‐induced murine model of asthma.

Methods

Lentivirus‐delivered shRNAs were used to suppress the expression of eotaxin and/or IL‐5 in local tissue in an OVA‐induced murine asthma model.

Results

Intra‐tracheal administration of lentivirus containing eotaxin shRNA expressing cassette (eoSEC3.3) efficiently moderated the characteristics of asthma, including airway hyper‐responsiveness, cellular infiltration of lung tissues, and eotaxin and IL‐5 levels in bronchio‐alveolar lavage fluid. Administration of lentiviruses expressing IL‐5 or eotaxin shRNAs (IL5SEC4 + eoSEC3.3) also moderated the symptoms of asthma in a mouse model.

Conclusions

Local delivery of lentiviruses expressing IL‐5 and eotaxin shRNAs provides a potential tool in moderating airway inflammation and also has the potential for developing clinical therapy based on the application of shRNAs of chemokines and cytokines involved in T helper 2 cell inflammation and eosinophilia. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
75.
76.
77.
J D Pilot  J M East  A G Lee 《Biochemistry》2001,40(28):8188-8195
We have developed a procedure for the reconstitution of Escherichia coli diacylglycerol kinase (DGK) into phospholipid bilayers containing diacylglycerol substrate. When DGK is reconstituted into a series of phosphatidylcholines containing monounsaturated fatty acyl chains, activity against dihexanoylglycerol (DHG) as a substrate was found to be markedly dependent on the fatty acyl chain length with the highest activity in dioleoylphosphatidylcholine [di(C18:1)PC] and a lower activity in bilayers with shorter or longer fatty acyl chains. Low activities in the short chain phospholipid dimyristoleoylphosphatidylcholine [di(C14:1)PC] followed from an increase in the K(m) value for DHG and ATP, with no effect on v(max). In contrast, in the long chain lipid dierucoylphosphatidylcholine [di(C24:1)PC], the low activity followed from a decrease in v(max) with no effect on K(m). In mixtures of two phosphatidylcholines with different chain lengths, the activity corresponded to that expected for the average chain length of the mixture. Cholesterol increased the activity in di(C14:1)PC but slightly decreased it in di(C18:1)PC or di(C24:1)PC, effects that could follow from changes in bilayer thickness caused by cholesterol.  相似文献   
78.
Rabbit alveolar macrophages exhibit a chemiluminescent response which is associated with phagocytosis of zymosan and polystyrene-butadiene particles. The chemiluminescence reaches a peak in 15 to 25 minutes and then gradually diminishes over the next 1 to 3 hours. During the time of maximal light emission there appears to be no actual uptake of particles, but the response is dependent upon the particle concentration. The metabolic inhibitor, DNP (2,4-dinitrophenol), causes a rapid inhibition of the chemiluminescent response. The addition of ATP to the medium prior to exposure of the cells to particles causes the chemiluminescent response to be greatly diminished, i.e., 0.3mM ATP virtually abolishes the response. These experiments suggest that some metabolic response of the cell to phagocytosis is responsible for the chemiluminescence.  相似文献   
79.
Although acupuncture therapy is widely used in traditional Asian medicine for the treatment of diverse internal organ disorders, its underlying biological mechanisms are largely unknown. Here, we investigated the functional involvement of acupuncture stimulation (AS) in the regulation of inflammatory responses. TNF-α production in mouse serum, which was induced by lipopolysaccharide (LPS) administration, was decreased by manual acupuncture (MAC) at the zusanli acupoint (stomach36, ST36). In the spleen, TNF-α mRNA and protein levels were also downregulated by MAC and were recovered by using a splenic neurectomy and a vagotomy. c-Fos, which was induced in the nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus nerve (DMV) by LPS and electroacupuncture (EAC), was further increased by focal administration of the AMPA receptor blocker CNQX and the purinergic receptor antagonist PPADS. TNF-α levels in the spleen were decreased by CNQX and PPADS treatments, implying the involvement of inhibitory neuronal activity in the DVC. In unanesthetized animals, both MAC and EAC generated c-Fos induction in the DVC neurons. However, MAC, but not EAC, was effective in decreasing splenic TNF-α production. These results suggest that the therapeutic effects of acupuncture may be mediated through vagal modulation of inflammatory responses in internal organs.  相似文献   
80.
The amounts of cAMP and cGMP in the rat pinealocyte are regulated by norepinephrine acting through synergistic dual receptor mechanisms involving alpha 1- and beta-adrenoceptors (Vanecek, J., Sugden, D., Weller, J.L., and Klein, D.C. (1985) Endocrinology 116, 2167-2173; Sugden, L., Sugden, D., and Klein, D.C. (1986) J. Biol. Chem. 261, 11608-11612). Based on the available evidence, it appears that Ca2+-phospholipid-dependent protein kinase is involved in the alpha 1-adrenergic potentiation of beta-adrenergic stimulation of cAMP, but not in the stimulation of cGMP (Sugden, D., Vanecek, J., Klein, D.C., Thomas, T.P., and Anderson, W.B. (1985) Nature 314, 359-361). In the present study the role of protein kinase C in the adrenergic stimulation of cGMP was reinvestigated, with the purpose of determining whether protein kinase C activators would potentiate the effects of beta-adrenergic agonists on cGMP if cells were also treated with agents known to elevate intracellular free Ca2+. The protein kinase C activator 4 beta-phorbol 12-myristate 13-acetate (PMA) markedly elevated the cGMP content of beta-adrenergically stimulated pinealocytes which had also been treated with 1 microM A23187, 15 mM K+, or 1 microM ouabain. The effects of A23187 were blocked by EGTA and those of K+ were blocked by nifedipine, establishing the involvement of Ca2+. The stimulatory effects of PMA on cGMP accumulation were mimicked by other protein kinase C activators. PMA also stimulated cGMP accumulation in cells treated with cholera toxin (1 microgram/ml) and A23187 (1 microM), but not in cells treated only with cholera toxin. These results suggest that protein kinase C, which is activated in the pinealocyte by the alpha-adrenergic agonist phenylephrine, is probably involved in the adrenergic regulation of cGMP accumulation at a step distal to receptor activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号