全文获取类型
收费全文 | 56254篇 |
免费 | 4703篇 |
国内免费 | 49篇 |
专业分类
61006篇 |
出版年
2023年 | 200篇 |
2022年 | 584篇 |
2021年 | 1003篇 |
2020年 | 556篇 |
2019年 | 741篇 |
2018年 | 1133篇 |
2017年 | 889篇 |
2016年 | 1566篇 |
2015年 | 2585篇 |
2014年 | 2875篇 |
2013年 | 3368篇 |
2012年 | 4344篇 |
2011年 | 4154篇 |
2010年 | 2638篇 |
2009年 | 2320篇 |
2008年 | 3338篇 |
2007年 | 3100篇 |
2006年 | 2833篇 |
2005年 | 2558篇 |
2004年 | 2502篇 |
2003年 | 2226篇 |
2002年 | 1897篇 |
2001年 | 1645篇 |
2000年 | 1536篇 |
1999年 | 1218篇 |
1998年 | 528篇 |
1997年 | 468篇 |
1996年 | 401篇 |
1995年 | 393篇 |
1994年 | 305篇 |
1993年 | 298篇 |
1992年 | 639篇 |
1991年 | 515篇 |
1990年 | 474篇 |
1989年 | 479篇 |
1988年 | 405篇 |
1987年 | 390篇 |
1986年 | 318篇 |
1985年 | 329篇 |
1984年 | 270篇 |
1983年 | 224篇 |
1982年 | 189篇 |
1981年 | 162篇 |
1980年 | 160篇 |
1979年 | 220篇 |
1978年 | 197篇 |
1977年 | 179篇 |
1976年 | 170篇 |
1974年 | 196篇 |
1972年 | 155篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH—developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP—based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS—derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species. 相似文献
992.
Seong Yong Park Won Jun Kang Arthur Cho Ju Ri Chae Ye Lim Cho Jung Young Kim Ji Woong Lee Kyung Young Chung 《PloS one》2015,10(6)
Background
We designed a hypoxia-imaging modality to detect ischemia of the gastric conduit after esophagectomy.Materials and Methods
A rat esophagectomy model was created using 12-16-week-old, 300-350 g male Sprague-Dawley rats. In the operation group (n=6), partial gastric devascularization was performed by ligating the left gastric artery and the short gastric arteries and an esophagogastric anastomosis was performed. In the control group (n=6), the esophageal-gastric junction was incised and suturing was performed without gastric devascularization. Positron emission tomography (PET) images were taken using a microPET rodent model scanner, 24 h after the initial operation, after injection of 200 μCi 64Cu-diacetyl-bis (N4-methylsemicarbazone) (64Cu-ATSM) and pimonidazole 120 mg/kg. After microPET imaging, autoradiography and immunohistochemistry were performed.Results
The PET image revealed 64Cu-ATSM uptake at the fundus in the operation group 3 h after 64Cu-ATSM injection. The maximum percentage of the injected dose per gram of tissue was higher in the operation group (0.047±0.015 vs. 0.026±0.006, p=0.021). The fundus/liver ratio was also higher in the operation group (0.541±0.126 vs. 0.278±0.049, p=0.002). Upon autoradiography, 64Cu-ATSM uptake was observed in the fundus in the operation group, and was well-correlated to that observed on the PET image. Upon immunohistochemistry, expression of hypoxia-inducible factor 1a and pimonidazole were significantly increased at the fundus and lesser curvature compared to the greater curvature in the operation group.Conclusion
Hypoxia PET imaging with 64Cu-ATSM can detect ischemia in a rat esophagectomy model. Further clinical studies are needed to verify whether hypoxia imaging may be useful in humans. 相似文献993.
Suho Lee Hyunji Moon Gayoung Kim Jeong Hoon Cho Lee Dae-Hee Michael B. Ye Daeho Park 《Molecules and cells》2015,38(7):657-662
Rapid and efficient engulfment of apoptotic cells is an essential property of phagocytes for removal of the large number of apoptotic cells generated in multicellular organisms. To achieve this, phagocytes need to be able to continuously uptake apoptotic cells. It was recently reported that uncoupling protein 2 (Ucp2) promotes engulfment of apoptotic cells by increasing the phagocytic capacity, thereby allowing cells to continuously ingest apoptotic cells. However, the functions of Ucp2, beyond its possible role in dissipating the mitochondrial membrane potential, that contribute to elevation of the phagocytic capacity have not been determined. Here, we report that the anion transfer or nucleotide binding activity of Ucp2, as well as its dissipation of the mitochondrial membrane potential, is necessary for Ucp2-mediated engulfment of apoptotic cells. To study these properties, we generated Ucp2 mutations that affected three different functions of Ucp2, namely, dissipation of the mitochondrial membrane potential, transfer of anions, and binding of purine nucleotides. Mutations of Ucp2 that affected the proton leak did not enhance the engulfment of apoptotic cells. Although anion transfer and nucleotide binding mutations did not affect the mitochondrial membrane potential, they exerted a dominant-negative effect on Ucp2-mediated engulfment. Furthermore, none of our Ucp2 mutations increased the phagocytic capacity. We conclude that dissipation of the proton gradient by Ucp2 is not the only determinant of the phagocytic capacity and that anion transfer or nucleotide binding by Ucp2 is also essential for Ucp2-mediated engulfment of apoptotic cells. 相似文献
994.
Communication over the Network of Binary Switches Regulates the Activation of A2A Adenosine Receptor
Dynamics and functions of G-protein coupled receptors (GPCRs) are accurately regulated by the type of ligands that bind to the orthosteric or allosteric binding sites. To glean the structural and dynamical origin of ligand-dependent modulation of GPCR activity, we performed total ~ 5 μsec molecular dynamics simulations of A2A adenosine receptor (A2AAR) in its apo, antagonist-bound, and agonist-bound forms in an explicit water and membrane environment, and examined the corresponding dynamics and correlation between the 10 key structural motifs that serve as the allosteric hotspots in intramolecular signaling network. We dubbed these 10 structural motifs “binary switches” as they display molecular interactions that switch between two distinct states. By projecting the receptor dynamics on these binary switches that yield 210 microstates, we show that (i) the receptors in apo, antagonist-bound, and agonist-bound states explore vastly different conformational space; (ii) among the three receptor states the apo state explores the broadest range of microstates; (iii) in the presence of the agonist, the active conformation is maintained through coherent couplings among the binary switches; and (iv) to be most specific, our analysis shows that W246, located deep inside the binding cleft, can serve as both an agonist sensor and actuator of ensuing intramolecular signaling for the receptor activation. Finally, our analysis of multiple trajectories generated by inserting an agonist to the apo state underscores that the transition of the receptor from inactive to active form requires the disruption of ionic-lock in the DRY motif. 相似文献
995.
Saravanabhavan Thangavel Matteo Berti Maryna Levikova Cosimo Pinto Shivasankari Gomathinayagam Marko Vujanovic Ralph Zellweger Hayley Moore Eu Han Lee Eric A. Hendrickson Petr Cejka Sheila Stewart Massimo Lopes Alessandro Vindigni 《The Journal of cell biology》2015,208(5):545-562
Accurate processing of stalled or damaged DNA replication forks is paramount to genomic integrity and recent work points to replication fork reversal and restart as a central mechanism to ensuring high-fidelity DNA replication. Here, we identify a novel DNA2- and WRN-dependent mechanism of reversed replication fork processing and restart after prolonged genotoxic stress. The human DNA2 nuclease and WRN ATPase activities functionally interact to degrade reversed replication forks with a 5′-to-3′ polarity and promote replication restart, thus preventing aberrant processing of unresolved replication intermediates. Unexpectedly, EXO1, MRE11, and CtIP are not involved in the same mechanism of reversed fork processing, whereas human RECQ1 limits DNA2 activity by preventing extensive nascent strand degradation. RAD51 depletion antagonizes this mechanism, presumably by preventing reversed fork formation. These studies define a new mechanism for maintaining genome integrity tightly controlled by specific nucleolytic activities and central homologous recombination factors. 相似文献
996.
997.
K R Luehrsen S Davidson Y J Lee R Rouhani A Soleimani T Raich C A Cain E J Collarini D T Yamanishi J Pearson K Magee M R Madlansacay V Bodepudi D Davoudzadeh P A Schueler W Mahoney 《The journal of histochemistry and cytochemistry》2000,48(1):133-145
Oligonucleotides that carry a detectable label can be used to probe for mRNA targets in in situ hybridization experiments. Oligonucleotide probes (OPs) have several advantages over cDNA probes and riboprobes. These include the easy synthesis of large quantities of probe, superior penetration of probe into cells and tissues, and the ability to design gene- or allele-specific probes. One significant disadvantage of OPs is poor sensitivity, in part due to the constraints of adding and subsequently detecting multiple labels per oligonucleotide. In this study, we compared OPs labeled with multiple detectable haptens (such as biotin, digoxigenin, or fluorescein) to those directly conjugated with horseradish peroxidase (HRP). We used branching phosphoramidites to add from two to 64 haptens per OP and show that in cells, 16-32 haptens per OP give the best detection sensitivity for mRNA targets. OPs were also made by directly conjugating the same oligonucleotide sequences to HRP. In general, the HRP-conjugated OPs were more sensitive than the multihapten versions of the same sequence. Both probe designs work well both on cells and on formaldehyde-fixed, paraffin-embedded tissues. We also show that a cocktail of OPs further increases sensitivity and that OPs can be designed to detect specific members of a gene family. This work demonstrates that multihapten-labeled and HRP-conjugated OPs are sensitive and specific and can make superior in situ hybridization probes for both research and diagnostic applications. 相似文献
998.
So-Jung Kwon Kyuyong Han Suhyun Jung Jong-Eun Lee Seongsoon Park Yong-Pil Cheon Jade Hyunjung Lim 《BMC biotechnology》2009,9(1):73
Background
MPG is a cell-permeable peptide with proven efficiency to deliver macromolecular cargoes into cells. In this work, we examined the efficacy of MPG as an N-terminal tag in a fusion protein to deliver a protein cargo and its mechanism of transduction. 相似文献999.
Mi Seon Park Hyun Suk Shin Gyung-Suk Kil Jehee Lee Cheol Young Choi 《Ichthyological Research》2011,58(3):195-201
We examined changes in the expression of Na+/K+-ATPase mRNA in the gills of the cinnamon clownfish using quantitative real-time PCR in an osmotically changing environment
[seawater (35 psu; practical salinity unit, 1 psu ≈ 1‰) → brackish water (17.5 psu) and brackish water with prolactin]. The
expression of Na+/K+-ATPase mRNA in gills was increased after the transfer to brackish water, and the expression was repressed by prolactin treatment.
Also, activities of gill Na+/K+-ATPase and plasma cortisol levels increased after the transfer to brackish water and were repressed in brackish water with
prolactin treatment. Na+/K+-ATPase-immunoreactive cells were almost consistently observed in the gill filaments, but absent from the lamella epithelia.
The plasma osmolality level decreased in brackish water, but the level of this parameter increased in brackish water with
prolactin treatment during salinity change. These results suggest that the Na+/K+-ATPase gene plays an important role in osmoregulation in gills, and prolactin improves the hyperosmoregulatory ability of
cinnamon clownfish in a brackish water (hypoosmotic) environment. 相似文献
1000.
Yoo KY Yoo DY Hwang IK Park JH Lee CH Choi JH Kwon SH Her S Lee YL Won MH 《Neurochemical research》2011,36(12):2417-2426
Innate immune system is very important to modulate the host defense against a large variety of pathogens. Toll-like receptors
(TLRs) play a key role in controlling innate immune response. Among TLRs, TLR4 is a specific receptor for lipopolysaccharide
and associated with the release of pro-inflammatory cytokines. In the present study, we investigated ischemia-related changes
of TLR4 immunoreactivity and its protein level, and nuclear factor κB (NF-κB) p65 immunoreactivity regarding inflammatory
responses in the hippocampal CA1 region after 5 min of transient cerebral ischemia to identify the correlation between transient
ischemia and inflammation. In the sham-operated group, TLR4 immunoreactivity was easily detected in pyramidal neurons of the
hippocampal CA1 region (CA1). TLR4 immunoreactivity in pyramidal neurons was distinctively decreased after ischemia/reperfusion
(I/R); instead, based on double immunofluorescence study, TLR4 immunoreactivity was expressed in non-pyramidal neurons and
astrocytes from 2 days postischemia. In addition, TLR4 protein level was lowest at 1 day postischemia and highest 4 days after
I/R. On the other hand, NF-κB p65 immunoreactivity was not detected in the CA1 of the sham-operated group, and NF-κB p65 immunoreactivity
was not observed until 1 day after I/R. However, NF-κB p65 immunoreactivity began to be expressed in astrocytes at 2 days
postischemia, and the immunoreactivity was strong 4 days postischemia. Our results indicate that TLR4 and NF-κB p65 immunoreactivity
are changed in CA1 pyramidal neurons and newly expressed in astrocytes, not in microglia, in the CA1 region after transient
cerebral ischemia. 相似文献