首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   6篇
  2022年   3篇
  2021年   3篇
  2019年   2篇
  2018年   7篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   7篇
  2011年   10篇
  2010年   4篇
  2009年   2篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   9篇
  2002年   3篇
  2001年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
21.
In the course of the ongoing global intensification and diversification of human pressures, the study of variation patterns of biological traits along environmental gradients can provide relevant information on the performance of species under shifting conditions. The pronounced salinity gradient, co‐occurrence of multiple stressors, and accelerated rates of change make the Baltic Sea and its transition to North Sea a suitable region for this type of study. Focusing on the bladderwrack Fucus vesiculosus, one of the main foundation species on hard‐bottoms of the Baltic Sea, we analyzed the phenotypic variation among populations occurring along 2,000 km of coasts subjected to salinities from 4 to >30 and a variety of other stressors. Morphological and biochemical traits, including palatability for grazers, were recorded at 20 stations along the Baltic Sea and four stations in the North Sea. We evaluated in a common modeling framework the relative contribution of multiple environmental drivers to the observed trait patterns. Salinity was the main and, in some cases, the only environmental driver of the geographic trait variation in F. vesiculosus. The decrease in salinity from North Sea to Baltic Sea stations was accompanied by a decline in thallus size, photosynthetic pigments, and energy storage compounds, and affected the interaction of the alga with herbivores and epibiota. For some traits, drivers that vary locally such as wave exposure, light availability or nutrient enrichment were also important. The strong genetic population structure in this macroalgae might play a role in the generation and maintenance of phenotypic patterns across geographic scales. In light of our results, the desalination process projected for the Baltic Sea could have detrimental impacts on F. vesiculosus in areas close to its tolerance limit, affecting ecosystem functions such as habitat formation, primary production, and food supply.  相似文献   
22.
Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programmes. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulphide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta‐analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and economic costs, macroalgal blooms have ecological effects that may alter their capacity to deliver important ecosystem services.  相似文献   
23.
Invasions of non-native species are modifying global biodiversity but the ecological mechanisms underlying invasion processes are still not well understood. A degree of niche separation of non-native and sympatric native species can possibly explain the success of novel species in their new environment. In this study, we quantified experimentally and in situ the environmental niche space of caridean shrimps (native Crangon crangon and Palaemon adspersus, non-native Palaemon elegans) inhabiting the northern Baltic Sea. Field studies showed that the non-native P. elegans had wider geographical range compared to native species although the level of habitat specialization was similar in both Palaemon species. There were clear differences in shrimp habitat occupancy with P. elegans inhabiting lower salinity areas and more eutrophicated habitats compared to the native species. Consequently, the non-native shrimp has occupied large areas of the northern Baltic Sea that were previously devoid of the native shrimps. Experiments demonstrated that the non-native shrimp had higher affinity to vegetated substrates compared to native species. The study suggests that the abilities of the non-native shrimp to thrive in more stressful habitats (lower salinity, higher eutrophication), that are sub-optimal for native shrimps, plausibly explain the invasion success of P. elegans.  相似文献   
24.
We investigated the geographic occurrence and genetic diversity of partitiviruses among 247 Heterobasidion specimens representing seven species and originating from Europe, Asia, and North America. Based on sequence analysis, partitiviruses were relatively rare, and occurred only in about 5 % of the Heterobasidion isolates analyzed, constituting a minority (about 28 %) of all virus-infected [double-stranded RNA (dsRNA)-positive] isolates. Altogether ten virus strains were characterized in sequence: one complete genome sequence of 3893 bp, six complete RNA-dependent RNA polymerase sequences of 2000-2033 bp, and three partial polymerase sequences. Based on phylogenetic analysis, the virus strains were assigned into three putative partitivirus species: HetRV1 (Heterobasidion RNA virus 1), HetRV4, and HetRV5. Degenerate consensus primers were designed for RT-PCR detection of these virus species. HetRV1 occurred in five different Heterobasidion species, and resembled the previously described Heterobasidion annosum virus (HaV). Highly similar HetRV1 strains with 98 % nucleotide level similarity were found from H. parviporum (member of the H. annosum species complex) and H. australe (member of the H. insulare complex) growing in the same region in Bhutan. This observation suggests recent virus transmission between these taxonomically distant Heterobasidion species in nature. It was also shown that HetRV1 can be transmitted by mycelial contact between the H. annosum and H. insulare complexes. The two other virus species, HetRV4 and HetRV5, were closely related to the Amasya Cherry Disease-associated mycovirus, to Heterobasidion parviporum partitivirus Fr110B, and also to several plant-infecting alphacryptoviruses. These results are in accordance with the view of a close evolutionary relationship between partitiviruses of plants and fungi.  相似文献   
25.
Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical–chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta‐analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non‐significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE‐related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity–ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans.  相似文献   
26.
An ELISA Microtiter Plate, Ochratoxin Test called AgraQuant® was validated to measure ochratoxin A in a range from 2 to 40ppb in corn, milo, barley, wheat, soybeans and green coffee. The test is performed as a solid phase direct competitive ELISA using a horseradish peroxidase conjugate as the competing, measurable entity. For the test method, ochratoxin A is extracted from ground samples with 70% methanol and sample extracts plus conjugate are mixed and then added to the antibody-coated microwells. After 10min incubation at room temperature, the plate is washed and enzyme substrate is added and allowed to incubate for an additional 5min. Stop solution is then added and the intensity of the resulting yellow color is measured optically with a microplate reader at 450nm. Results obtained from internal validation studies assessing accelerated stability indicate a 1year shelf life; accuracy and precision are comparable to HPLC from 0 to 80ppb and limit of detection in corn is 1.9 ppb and other food commodities is up to 3.8 ppb. Comparison of the method to HPLC, ability to detect individual ochratoxins, and ruggedness of the test kits determined this test to be rugged from 18 to 30°C, sensitive, accurate, precise and effective comparable to HPLC for measuring ochratoxin A ranging from 2 to 40ppb in several commodities.  相似文献   
27.
The protein chicken avidin is a commonly used tool in various applications. The avidin gene belongs to a gene family that also includes seven other members known as the avidin-related genes (AVR). We report here on the extremely high thermal stability and functional characteristics of avidin-related protein AVR4/5, a member of the avidin protein family. The thermal stability characteristics of AVR4/5 were examined using a differential scanning calorimeter, microparticle analysis, and a microplate assay. Its biotin-binding properties were studied using an isothermal calorimeter and IAsys optical biosensor. According to these analyses, in the absence of biotin AVR4/5 is clearly more stable (T(m) = 107.4 +/- 0.3 degrees C) than avidin (T(m) = 83.5 +/- 0.1 degrees C) or bacterial streptavidin (T(m) = 75.5 degrees C). AVR4/5 also exhibits a high affinity for biotin (K(d) approximately 3.6 x 10(-14) m) comparable to that of avidin and streptavidin (K(d) approximately 10(-15) m). Molecular modeling and site-directed mutagenesis were used to study the molecular details behind the observed high thermostability. The results indicate that AVR4/5 and its mutants have high potential as new improved tools for applications where exceptionally high stability and tight biotin binding are needed.  相似文献   
28.
29.
30.
Somatic hybridization has been used in potato to overcome the sexual barriers between the cultivated (Solanum tuberosum L.) and wild species. To date hundreds of inter/intra-specific somatic hybrids have been produced via protoplast fusions using 23 Solanum species and characterized for multiple traits such as agronomic, disease/pest resistance, salinity, frost and others. With increasing success in recovery of fusion products, somatic hybrids have been exploited in potato genetics, breeding and genomics studies. Here, we report on progress in somatic hybridization research in potato during the past 40 years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号