首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   15篇
  166篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   8篇
  2014年   11篇
  2013年   18篇
  2012年   16篇
  2011年   8篇
  2010年   11篇
  2009年   11篇
  2008年   12篇
  2007年   16篇
  2006年   4篇
  2005年   5篇
  2004年   5篇
  2003年   6篇
  2002年   1篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1989年   1篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
81.
Standing and walking balance control in humans relies on the transformation of sensory information to motor commands that drive muscles. Here, we evaluated whether sensorimotor transformations underlying walking balance control can be described by task-level center of mass kinematics feedback similar to standing balance control. We found that delayed linear feedback of center of mass position and velocity, but not delayed linear feedback from ankle angles and angular velocities, can explain reactive ankle muscle activity and joint moments in response to perturbations of walking across protocols (discrete and continuous platform translations and discrete pelvis pushes). Feedback gains were modulated during the gait cycle and decreased with walking speed. Our results thus suggest that similar task-level variables, i.e. center of mass position and velocity, are controlled across standing and walking but that feedback gains are modulated during gait to accommodate changes in body configuration during the gait cycle and in stability with walking speed. These findings have important implications for modelling the neuromechanics of human balance control and for biomimetic control of wearable robotic devices. The feedback mechanisms we identified can be used to extend the current neuromechanical models that lack balance control mechanisms for the ankle joint. When using these models in the control of wearable robotic devices, we believe that this will facilitate shared control of balance between the user and the robotic device.  相似文献   
82.
83.
Tumor formation is in part driven by DNA copy number alterations (CNAs), which can be measured using microarray-based Comparative Genomic Hybridization (aCGH). Multiexperiment analysis of aCGH data from tumors allows discovery of recurrent CNAs that are potentially causal to cancer development. Until now, multiexperiment aCGH data analysis has been dependent on discretization of measurement data to a gain, loss or no-change state. Valuable biological information is lost when a heterogeneous system such as a solid tumor is reduced to these states. We have developed a new approach which inputs nondiscretized aCGH data to identify regions that are significantly aberrant across an entire tumor set. Our method is based on kernel regression and accounts for the strength of a probe's signal, its local genomic environment and the signal distribution across multiple tumors. In an analysis of 89 human breast tumors, our method showed enrichment for known cancer genes in the detected regions and identified aberrations that are strongly associated with breast cancer subtypes and clinical parameters. Furthermore, we identified 18 recurrent aberrant regions in a new dataset of 19 p53-deficient mouse mammary tumors. These regions, combined with gene expression microarray data, point to known cancer genes and novel candidate cancer genes.  相似文献   
84.
We developed a Kalman smoothing algorithm to improve estimates of joint kinematics from measured marker trajectories during motion analysis. Kalman smoothing estimates are based on complete marker trajectories. This is an improvement over other techniques, such as the global optimisation method (GOM), Kalman filtering, and local marker estimation (LME), where the estimate at each time instant is only based on part of the marker trajectories. We applied GOM, Kalman filtering, LME, and Kalman smoothing to marker trajectories from both simulated and experimental gait motion, to estimate the joint kinematics of a ten segment biomechanical model, with 21 degrees of freedom. Three simulated marker trajectories were studied: without errors, with instrumental errors, and with soft tissue artefacts (STA). Two modelling errors were studied: increased thigh length and hip centre dislocation. We calculated estimation errors from the known joint kinematics in the simulation study. Compared with other techniques, Kalman smoothing reduced the estimation errors for the joint positions, by more than 50% for the simulated marker trajectories without errors and with instrumental errors. Compared with GOM, Kalman smoothing reduced the estimation errors for the joint moments by more than 35%. Compared with Kalman filtering and LME, Kalman smoothing reduced the estimation errors for the joint accelerations by at least 50%. Our simulation results show that the use of Kalman smoothing substantially improves the estimates of joint kinematics and kinetics compared with previously proposed techniques (GOM, Kalman filtering, and LME) for both simulated, with and without modelling errors, and experimentally measured gait motion.  相似文献   
85.
In morphological analysis of the femur, the hip joint centre (HJC) is generally determined using a 3D model of the femoral head based on medical images. However, the portion of the image selected to represent the femoral head may influence the HJC. We determined if this influence invalidates the results of three HJC calculation methods, one of which we introduce here.

To isolate femoral heads in cadaver CT images, thresholds were applied to the distance between femur and acetabulum models. The sensitivity of the HJC to these thresholds and the differences between methods were quantified.

For thresholds between 6 and 9 mm and healthy hips, differences between methods were below 1 mm and all methods were insensitive to threshold changes. For higher thresholds, the fovea capitis femoris disturbed the HJC. In two deformed hips, the new method performed superiorly. We conclude that for normal hips all methods produce valid results.  相似文献   
86.
BackgroundIrritable bowel syndrome (IBS) is a disorder with multifactorial pathophysiology. Intestinal barrier may be altered, especially in diarrhea-predominant IBS (IBS-D). Several mediators may contribute to increased intestinal permeability in IBS.AimWe aimed to assess effects of tryptase and LPS on in vitro permeability using a 3-dimensional cell model after basolateral cell exposure. Furthermore, we assessed the extent to which these mediators in IBS plasma play a role in intestinal barrier function.ResultsTryptase (20 and 50 mU) and LPS (6.25 – 50 ng/mL) significantly increased Caco-2 permeability versus control (all P< 0.05). Plasma of IBS-D only showed significantly elevated median tryptase concentrations (7.1 [3.9 – 11.0] vs. 4.2 [2.2 – 7.0] vs. 4.2 [2.5 – 5.9] μg/mL; P<0.05) and LPS concentrations (3.65 [3.00 – 6.10] vs. 3.10 [2.60-3.80] vs. 2.65 [2.40 – 3.40] EU/ml; P< 0.05) vs. IBS-C and HC. Also, plasma of IBS-D increased Caco-2 permeability versus HC (0.14450 ± 0.00472 vs. 0.00021 ± 0.00003; P < 0.001), which was attenuated by selective inhibition of tryptase and LPS (P< 0.05).ConclusionBasolateral exposure of spheroids to plasma of IBS-D patients resulted in a significantly increased FD4 permeation, which was partially abolished by selective inhibition of tryptase and LPS. These findings point to a role of systemic tryptase and LPS in the epithelial barrier alterations observed in patients with IBS-D.  相似文献   
87.
In morphological analysis of the femur, the hip joint centre (HJC) is generally determined using a 3D model of the femoral head based on medical images. However, the portion of the image selected to represent the femoral head may influence the HJC. We determined if this influence invalidates the results of three HJC calculation methods, one of which we introduce here. To isolate femoral heads in cadaver CT images, thresholds were applied to the distance between femur and acetabulum models. The sensitivity of the HJC to these thresholds and the differences between methods were quantified. For thresholds between 6 and 9?mm and healthy hips, differences between methods were below 1?mm and all methods were insensitive to threshold changes. For higher thresholds, the fovea capitis femoris disturbed the HJC. In two deformed hips, the new method performed superiorly. We conclude that for normal hips all methods produce valid results.  相似文献   
88.
WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity determents in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is required for pathogenicity and expression of key plant effector proteins. F. graminearum, an important pathogen of cereals, is not known to employ switching and no effector proteins from F. graminearum have been found to date that are required for infection. In this study, the potential role of the WOR1-like gene in pathogenesis was tested in this toxigenic fungus. Deletion of the WOR1 ortholog (called FGP1) in F. graminearum results in greatly reduced pathogenicity and loss of trichothecene toxin accumulation in infected wheat plants and in vitro. The loss of toxin accumulation alone may be sufficient to explain the loss of pathogenicity to wheat. Under toxin-inducing conditions, expression of genes for trichothecene biosynthesis and many other genes are not detected or detected at lower levels in Δfgp1 strains. FGP1 is also involved in the developmental processes of conidium formation and sexual reproduction and modulates a morphological change that accompanies mycotoxin production in vitro. The Wor1-like proteins in Fusarium species have highly conserved N-terminal regions and remarkably divergent C-termini. Interchanging the N- and C- terminal portions of proteins from F. oxysporum and F. graminearum resulted in partial to complete loss of function. Wor1-like proteins are conserved but have evolved to regulate pathogenicity in a range of fungi, likely by adaptations to the C-terminal portion of the protein.  相似文献   
89.
Saddle position affects mechanical variables during submaximal cycling, but little is known about its effect on mechanical performance during maximal cycling. Therefore, this study relates saddle position to experimentally obtained maximal power output and theoretically calculated moment generating capacity of hip, knee and ankle muscles during isokinetic cycling. Ten subjects performed maximal cycling efforts (5 s at 100 rpm) at different saddle positions varying ± 2 cm around the in literature suggested optimal saddle position (109% of inner leg length), during which crank torque and maximal power output were determined. In a subgroup of 5 subjects, lower limb kinematics were additionally recorded during submaximal cycling at the different saddle positions. A decrease in maximal power output was found for lower saddle positions. Recorded changes in knee kinematics resulted in a decrease in moment generating capacity of biceps femoris, rectus femoris and vastus intermedius at the knee. No differences in muscle moment generating capacity were found at hip and ankle. Based on these results we conclude that lower saddle positions are less optimal to generate maximal power output, as it mainly affects knee joint kinematics, compromising mechanical performance of major muscle groups acting at the knee.  相似文献   
90.
The typical dyslipidaemia in type 2 diabetes mellitus shows high levels of triglycerides, low levels of highdensity lipoprotein cholesterol (HDL-c) and small dense low-density lipoprotein (LDL) particles. In these patients low-dose atorvastatin (10 mg) results in a significant and relevant reduction in triglycerides and LDL-c. High-dose atorvastatin (80 mg) results in a better LDL-c reduction.The endothelial dysfunction is likely to be caused by factors related to insulin resistance and not by dyslipidaemia alone.The results from the DALI study (Diabetes Atorvastatin Lipid Intervention) on lipids and endothelial function are discussed, together with two invasive endothelial function studies in diabetics and hypertriglyceridaemic patients. The subgroup of diabetics in the large secondary prevention trials using statins are analysed with respect to total cholesterol lowering and death due to coronary heart disease and nonfatal myocardial infarction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号