首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   10篇
  2022年   4篇
  2021年   12篇
  2020年   4篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   13篇
  2014年   10篇
  2013年   9篇
  2012年   17篇
  2011年   15篇
  2010年   17篇
  2009年   8篇
  2008年   10篇
  2007年   7篇
  2006年   8篇
  2005年   7篇
  2004年   8篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   4篇
  1990年   3篇
  1989年   5篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1977年   3篇
  1976年   1篇
排序方式: 共有197条查询结果,搜索用时 31 毫秒
101.
Intellectual disability (ID) is a major health problem mostly with an unknown etiology. Recently exome sequencing of individuals with ID identified novel genes implicated in the disease. Therefore the purpose of the present study was to identify the genetic cause of ID in one syndromic and two non-syndromic Pakistani families. Whole exome of three ID probands was sequenced. Missense variations in two plausible novel genes implicated in autosomal recessive ID were identified: lysine (K)-specific methyltransferase 2B (KMT2B), zinc finger protein 589 (ZNF589), as well as hedgehog acyltransferase (HHAT) with a de novo mutation with autosomal dominant mode of inheritance. The KMT2B recessive variant is the first report of recessive Kleefstra syndrome-like phenotype. Identification of plausible causative mutations for two recessive and a dominant type of ID, in genes not previously implicated in disease, underscores the large genetic heterogeneity of ID. These results also support the viewpoint that large number of ID genes converge on limited number of common networks i.e. ZNF589 belongs to KRAB-domain zinc-finger proteins previously implicated in ID, HHAT is predicted to affect sonic hedgehog, which is involved in several disorders with ID, KMT2B associated with syndromic ID fits the epigenetic module underlying the Kleefstra syndromic spectrum. The association of these novel genes in three different Pakistani ID families highlights the importance of screening these genes in more families with similar phenotypes from different populations to confirm the involvement of these genes in pathogenesis of ID.  相似文献   
102.
Exome sequencing is revolutionizing Mendelian disease gene identification. This results in improved clinical diagnosis, more accurate genotype-phenotype correlations and new insights into the role of rare genomic variation in disease.  相似文献   
103.
Orliac MJ  Argot C  Gilissen E 《PloS one》2012,7(2):e30000
We here describe the endocranial cast of the Eocene archaic ungulate Hyopsodus lepidus AMNH 143783 (Bridgerian, North America) reconstructed from X-ray computed microtomography data. This represents the first complete cranial endocast known for Hyopsodontinae. The Hyopsodus endocast is compared to other known "condylarthran" endocasts, i. e. those of Pleuraspidotherium (Pleuraspidotheriidae), Arctocyon (Arctocyonidae), Meniscotherium (Meniscotheriidae), Phenacodus (Phenacodontidae), as well as to basal perissodactyls (Hyracotherium) and artiodactyls (Cebochoerus, Homacodon). Hyopsodus presents one of the highest encephalization quotients of archaic ungulates and shows an "advanced version" of the basal ungulate brain pattern, with a mosaic of archaic characters such as large olfactory bulbs, weak ventral expansion of the neopallium, and absence of neopallium fissuration, as well as more specialized ones such as the relative reduction of the cerebellum compared to cerebrum or the enlargement of the inferior colliculus. As in other archaic ungulates, Hyopsodus midbrain exposure is important, but it exhibits a dorsally protruding largely developed inferior colliculus, a feature unique among "Condylarthra". A potential correlation between the development of the inferior colliculus in Hyopsodus and the use of terrestrial echolocation as observed in extant tenrecs and shrews is discussed. The detailed analysis of the overall morphology of the postcranial skeleton of Hyopsodus indicates a nimble, fast moving animal that likely lived in burrows. This would be compatible with terrestrial echolocation used by the animal to investigate subterranean habitat and/or to minimize predation during nocturnal exploration of the environment.  相似文献   
104.
105.
Cleaning interactions are essential for healthy marine ecosystem communities. This study reports the first documentation of the whale shark Rhincodon typus cleaning behaviour in the Indo-West Pacific by two wrasse species, the blue-streak cleaner wrasse Labroides dimidiatus and the moon wrasse Thalassoma lunare in Cebu, Philippines. This study documented 36 cleaning interactions with 14 individual whale sharks. The cleaning interactions appear opportunistic rather than targeted by the sharks, unlike that observed in other species of elasmobranchs. Further work should focus on understanding the drivers of these unique cleaning interactions.  相似文献   
106.
Dialysis related amyloidosis (DRA) is a progressive and serious complication in patients under long-term hemodialysis and mainly leads to osteo-articular diseases. Although beta(2)-microglobulin (beta2-m) is the major structural component of beta2-m amyloid fibrils, the initiation of amyloid formation is not clearly understood. Here, we have identified procollagen C-proteinase enhancer-1 (PCPE-1) as a new interacting protein with beta2-m by screening a human synovium cDNA library. The interaction of beta2-m with full-length PCPE-1 was confirmed by immunoprecipitation, solid-phase binding and pull-down assays. By yeast two-hybrid analysis and pull-down assay, beta2-m appeared to interact with PCPE-1 via the NTR (netrin-like) domain and not via the CUB (C1r/C1s, Uegf and BMP-1) domain region. In synovial tissues derived from hemodialysis patients with DRA, beta2-m co-localized and formed a complex with PCPE-1. beta2-m did not alter the basal activity of bone morphogenetic protein-1/procollagen C-proteinase (BMP-1/PCP) nor BMP-1/PCP activity enhanced by PCPE-1. PCPE-1 did not stimulate beta2-m amyloid fibril formation from monomeric beta2-m in vitro under acidic and neutral conditions as revealed by thioflavin T fluorescence spectroscopy and electron microscopy. Since PCPE-1 is abundantly expressed in connective tissues rich in type I collagen, it may be involved in the initial accumulation of beta2-m in selected tissues such as tendon, synovium and bone. Furthermore, since such preferential deposition of beta2-m may be linked to subsequent beta2-m amyloid fibril formation, the disruption of the interaction between beta2-m and PCPE-1 may prevent beta2-m amyloid fibril formation and therefore PCPE-1 could be a new target for the treatment of DRA.  相似文献   
107.
During puberty, mouse mammary epithelial ducts invade the stromal mammary fat pad in a wave of branching morphogenesis to form a complex ductal tree. Using pharmacologic and genetic approaches, we find that mammary gland branching morphogenesis requires transient matrix metalloproteinase (MMP) activity for invasion and branch point selection. MMP-2, but not MMP-9, facilitates terminal end bud invasion by inhibiting epithelial cell apoptosis at the start of puberty. Unexpectedly, MMP-2 also represses precocious lateral branching during mid-puberty. In contrast, MMP-3 induces secondary and tertiary lateral branching of ducts during mid-puberty and early pregnancy. Nevertheless, the mammary gland is able to develop lactational competence in MMP mutant mice. Thus, specific MMPs refine the mammary branching pattern by distinct mechanisms during mammary gland branching morphogenesis.  相似文献   
108.
Fetal events and obstetric complications are associated with schizophrenia. Here we report the results of a family-based candidate-gene study that assesses the role of maternal-fetal genotype incompatibility at the RHD locus in schizophrenia. We adapted the case-parent-trio log-linear modeling approach to test for RHD maternal-fetal genotype incompatibility and to distinguish this effect from a high-risk allele at or near the RHD locus and from a direct maternal effect alone. Eighty-eight patient-parent trios, 72 patient-mother pairs, and 21 patient-father pairs were genotyped at the RHD locus. Of the 181 patients, 62% were male and 81% were second born or later. Only three patients were born after prophylaxis against maternal isoimmunization had become common practice. There was significant evidence for an RHD maternal-fetal genotype incompatibility, and the incompatibility parameter was estimated at 2.6. There was no evidence to support linkage/association with schizophrenia at or near the RHD locus nor any evidence to support the role of maternal genotype effect alone. Our results replicate previous findings that implicate the RHD locus in schizophrenia, and the candidate-gene design of this study allows the elimination of alternative explanations for the role of this locus in disease. Thus, the present study provides increasing evidence that the RHD locus increases schizophrenia risk through a maternal-fetal genotype incompatibility mechanism that increases risk of an adverse prenatal environment (e.g., Rh incompatibility) rather than through linkage/association with the disorder, linkage disequilibrium with an unknown nearby susceptibility locus, or a direct maternal effect alone. This is the first candidate-gene study to explicitly test for and provide evidence of a maternal-fetal genotype incompatibility mechanism in schizophrenia.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号