首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2137篇
  免费   88篇
  国内免费   1篇
  2226篇
  2024年   4篇
  2023年   11篇
  2022年   38篇
  2021年   48篇
  2020年   27篇
  2019年   51篇
  2018年   58篇
  2017年   36篇
  2016年   86篇
  2015年   118篇
  2014年   124篇
  2013年   157篇
  2012年   214篇
  2011年   204篇
  2010年   130篇
  2009年   106篇
  2008年   161篇
  2007年   144篇
  2006年   88篇
  2005年   93篇
  2004年   78篇
  2003年   65篇
  2002年   42篇
  2001年   28篇
  2000年   29篇
  1999年   25篇
  1998年   7篇
  1997年   5篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   9篇
  1991年   4篇
  1989年   3篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   3篇
  1965年   1篇
排序方式: 共有2226条查询结果,搜索用时 0 毫秒
81.
82.
Sulfation of proteoglycans is an important post-translational modification in chondrocytes. We previously found that 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthetase-2 levels increased more than 10-fold during mesenchymal cell chondrogenesis. Given that PAPS is the sole sulfur donor, and is produced only by PAPS synthetase in all cells, increased expression of PAPS synthetase-2 should be a prerequisite for increased sulfation activity of chondrocytes. We found that sodium chlorate, a specific inhibitor of PAPS synthetase, inhibited proteoglycan sulfation during chondrogenesis. In contrast, sodium chlorate unexpectedly induced early expression of type II collagen and increased the number of cartilage nodules during chondrogenesis. Inhibition of sulfation also accelerated the down-regulation of N-cadherin and fibronectin during chondrogenesis. These findings suggest that sulfation has an important regulatory role in coordinating the timely expression of extracellular matrix molecules during chondrogenesis, and that under-sulfation may cause the breakdown of this coordination, leading to premature chondrogenesis.  相似文献   
83.
Niemann-Pick disease type C (NPC) is a fatal autosomal recessive cholesterol disorder characterized by severe progressive neurodegeneration. To unveil the mechanism of neurodegeneration, proteomic and morphological approaches were applied to the hippocampus in NPC -/- mouse. Two-DE was utilized to resolve the hippocampal protein expression profiles of 4- and 8-week-old NPC +/+ and -/- mice. Differentially expressed protein spots were identified by MALDI-TOF MS and database searching. At 4 weeks of age, there was no significant difference in protein profiles between NPC +/+ and -/- mice. However, at the age of 8 weeks, NPC +/+ and -/- mice showed marked difference in protein expressions. Among these, glutamate receptor 2 precursor was identified. The immunohistochemical study on neurotransporters showed that glial GABA transporter (GAT-3) increased in both 4- and 8-week-old NPC -/- mouse and glutamic acid decarboxylase (GAD-6) increased in 8-week-old NPC -/- mouse. Glial glutamate transporter, excitatory amino acids carrier-1 (EAAC1), decreased in 8-week-old NPC -/- mouse. In conclusion, our data may provide insight into the understanding of the basic mechanism through perturbation of protein networks and neurotransporter systems in a single gene knockout model of NPC disease.  相似文献   
84.
ObjectivesTo investigate whether human HLA‐homozygous induced pluripotent stem cell (iPSC)‐derived neural precursor cells (iPSC‐NPCs) can provide functional benefits in Huntington’s disease (HD), we transplanted them into the YAC128 transgenic HD mouse model.Materials and MethodsCHAi001‐A, an HLA‐homozygous iPSC line (A*33:03‐B*44:03‐DRB1*13:02), was differentiated into neural precursor cells, and then, they were transplanted into 6 months‐old YAC128 mice. Various behavioural and histological analyses were performed for five months after transplantation.ResultsMotor and cognitive functions were significantly improved in transplanted animals. Cells transplanted in the striatum showed multipotential differentiation. Five months after transplantation, the donor cells had differentiated into neurons, oligodendrocytes and astrocytes. Transplantation restored DARPP‐32 expression, synaptophysin density, myelin basic protein expression in the corpus callosum and astrocyte function.ConclusionAltogether, these results strongly suggest that iPSC‐NPCs transplantation induces neuroprotection and functional recovery in a mouse model of HD and should be taken forward for clinical trials in HD patients.  相似文献   
85.
The structure of At3g04780.1-des15, an Arabidopsis thaliana ortholog of the C-terminal domain of human thioredoxin-like protein, was determined by NMR spectroscopy. The structure is dominated by a beta-barrel sandwich. A two-stranded anti-parallel beta-sheet, which seals off one end of the beta-barrel, is flanked by two flexible loops rich in acidic amino acids. Although this fold often provides a ligand binding site, the structure did not reveal an appreciable cavity inside the beta-barrel. The three-dimensional structure of At3g04780.1-des15 provides an entry point for understanding its functional role and those of its mammalian homologs.  相似文献   
86.
This study was conducted to investigate effects of brain-derived neurotrophic factor on the neurite growth and the survival rate of antennal lobe neurons in vitro, and secretion of brain-derived neurotrophic factor-like neuropeptide from brain into hemolymph in the silk moth, Bombyx mori. In primary culture of antennal lobe neurons with brain-derived neurotrophic factor, it promoted both a neurite extension of putative antennal lobe projection neurons and an outgrowth of branches from principal neurites of putative antennal interneurons with significance (p<0.05). Brain-derived neurotrophic factor also increased significantly a survival rate of antennal lobe neurons (p<0.05). Results from immunolabeling of brain and retrocerebral complex, and ELISA assay of hemolymph showed that brain-derived neurotrophic factor-like neuropeptide was synthesized by both median and lateral neurosecretory cells of brain, then transported to corpora allata for storage, and finally secreted into hemolymph for action. These results will provide valuable information for differentiation of invertebrate brain neurons with brain-derived neurotrophic factor.  相似文献   
87.
88.
To investigate the effect of hyperosmotic medium on production and aggregation of the variant of Angiopoietin-1 (Ang1), cartilage oligomeric matrix protein (COMP)–Ang1, in recombinant Chinese hamster ovary (CHO) cells, CHO cells were cultivated in shaking flasks. NaCl and/or sorbitol were used to raise medium osmolality in the range of 300–450 mOsm/kg. The specific productivity of COMP–Ang1, qCOMP–Ang1, increased as medium osmolality increased. At NaCl-450 mOsm/kg, the qCOMP–Ang1 was 7.7-fold higher than that at NaCl-300 mOsm/kg, while, at sorbitol-450 mOsm/kg, it was 2.9-fold higher than that at sorbitol-300 mOsm/kg. This can be attributed to the increased relative mRNA level of COMP–Ang1 at NaCl-450 mOsm/kg which was approximately 2.4-fold higher than that at sorbitol-450 mOsm/kg. Western blot analysis showed that COMP–Ang1 aggregates started to occur in the late-exponential phase of cell growth. When sorbitol was used to raise the medium osmolality, a severe aggregation of COMP–Ang1 was observed. On the other hand, when NaCl was used, the aggregation of COMP–Ang1 was drastically reduced at NaCl-400 mOsm/kg. At NaCl-450 mOsm/kg, the aggregation of COMP–Ang1 was hardly observed. This suggests that environmental conditions are critical for the aggregation of COMP–Ang1. Taken together, the use of NaCl-induced hyperosmotic medium to cell culture process turns out to be an efficient strategy for enhancing COMP–Ang1 production and reducing COMP–Ang1 aggregation.  相似文献   
89.
Lysophosphatidic acid (LPA) stimulates Na(+)/H(+) exchanger 3 (NHE3) activity in opossum kidney proximal tubule (OK) cells by increasing the apical membrane amount of NHE3. This occurs by stimulation of exocytic trafficking of NHE3 to the apical plasma membrane by an E3KARP-dependent mechanism. However, it is still unclear how E3KARP leads to the LPA-induced exocytosis of NHE3. In the current study, we demonstrate that stable expression of exogenous E3KARP increases LPA-induced phospholipase C (PLC) activation and subsequent elevation of intracellular Ca(2+) in opossum kidney proximal tubule (OK) cells. Pretreatment with U73122, a PLC inhibitor, prevented the LPA-induced NHE3 activation and the exocytic trafficking of NHE3. To understand how the elevation of intracellular Ca(2+) leads to the stimulation of NHE3, we pretreated OK cells with BAPTA-AM, an intracellular Ca(2+) chelator. BAPTA-AM completely blocked the LPA-induced increase of NHE3 activity and surface NHE3 amount by decreasing the LPA-induced exocytic trafficking of NHE3. Pretreatment with GF109203X, a PKC inhibitor, did not affect the percent of LPA-induced NHE3 activation and increase of surface NHE3 amount. From these results, we suggest that E3KARP plays a necessary role in LPA-induced PLC activation, and that PLC-dependent elevation of intracellular Ca(2+) but not PKC activation is necessary for the LPA-induced increase of NHE3 exocytosis.  相似文献   
90.
One of the most widely used analytical techniques for sensitive detection of biologically and clinically significant analytes is the immunoassay. In recent years direct immunoprobes allowing label-free detection of the interaction between the antibody and the target analyte have proved their capabilities as fast, simple, and nevertheless highly sensitive methods. Cloned enzyme donor immunoassay (CEDIA) homogeneous assay is based on the bacterial enzyme beta-galactosidase, which has been genetically engineered into two inactive fragments, enzyme donor and enzyme acceptor. Reassociation of the fragments in the assay forms active enzyme, which acts on substrate to generate a colored product. A comprehensive kinetic model of CEDIA is developed to aid in understanding this method and to facilitate development of a truly homogeneous version, potentially applicable to a dipstick-type multianalyte point of care analytical device (ChemChip). Although the standard assay involves a two-step process, we also chose to model a single-combined process, which would be simpler to apply in a ChemChip device. From the modeling simulation, we obtain the time courses of the amounts of product and active enzyme, from which the dynamic ranges can be obtained as 10(-6)-10(-7) and 10(-5)-10(-7)M analyte concentration for two-step and single-combined processes under the conditions of the assumed parameters, respectively. A simple one-step immunoassay has the merit of reducing time and cost and has an improved dynamic range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号