首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6706篇
  免费   580篇
  国内免费   6篇
  7292篇
  2023年   19篇
  2022年   102篇
  2021年   165篇
  2020年   85篇
  2019年   95篇
  2018年   160篇
  2017年   125篇
  2016年   216篇
  2015年   360篇
  2014年   408篇
  2013年   466篇
  2012年   589篇
  2011年   527篇
  2010年   318篇
  2009年   250篇
  2008年   402篇
  2007年   386篇
  2006年   315篇
  2005年   314篇
  2004年   307篇
  2003年   211篇
  2002年   222篇
  2001年   208篇
  2000年   144篇
  1999年   113篇
  1998年   52篇
  1997年   35篇
  1996年   45篇
  1995年   33篇
  1994年   30篇
  1993年   23篇
  1992年   56篇
  1991年   36篇
  1990年   39篇
  1989年   34篇
  1988年   31篇
  1987年   37篇
  1986年   24篇
  1985年   24篇
  1984年   19篇
  1983年   17篇
  1982年   20篇
  1981年   22篇
  1980年   16篇
  1979年   21篇
  1978年   20篇
  1977年   22篇
  1976年   20篇
  1974年   17篇
  1969年   13篇
排序方式: 共有7292条查询结果,搜索用时 0 毫秒
881.
882.
An asexual lineage that reproduces by automictic thelytokous parthenogenesis has a problem: rapid loss of heterozygosity resulting in effective inbreeding. Thus, the circumstances under which rare asexual lineages thrive provide insights into the trade-offs that shape the evolution of alternative reproductive strategies across taxa. A socially parasitic lineage of the Cape honey bee, Apis mellifera capensis, provides an example of a thelytokous lineage that has endured for over two decades. It has been proposed that cytological adaptations slow the loss of heterozygosity in this lineage. However, we show that heterozygosity at the complementary sex determining (csd) locus is maintained via selection against homozygous diploid males that arise from recombination. Further, because zygosity is correlated across the genome, it appears that selection against diploid males reduces loss of homozygosity at other loci. Selection against homozygotes at csd results in substantial genetic load, so that if a thelytokous lineage is to endure, unusual ecological circumstances must exist in which asexuality permits such a high degree of fecundity that the genetic load can be tolerated. Without these ecological circumstances, sex will triumph over asexuality. In A. m. capensis, these conditions are provided by the parasitic interaction with its conspecific host, Apis mellifera scutellata.  相似文献   
883.
Lim YC  Oh SY  Kim H 《Experimental cell research》2012,318(10):1104-1111
Although head and neck squamous carcinoma cancer stem cells (HNSC-CSCs) can be enriched in serum-free suspension cultures, it is difficult to stably expand HNSC-CSC lines in suspension due to spontaneous apoptosis and differentiation. Here, we investigated whether HNSC-CSCs can be expanded without loss of stem cell properties by adherent culture methods. Cell culture plates were coated with type IV collagen, laminin, or fibronectin. We examined cancer stem cell traits of adherent HNSC-CSCs grown on these plates using immunocytochemistry for stem cell marker expression and analyses of chemo-resistance and xenograft tumorigenicity. We also assessed the growth rate, apoptosis rate, and gene transduction efficiency of adherent and suspended HNSC-CSCs. HNSC-CSCs grew much faster on type IV collagen-coated plates than in suspension. Adherent HNSC-CSCs expressed putative stem cell markers (OCT4 and CD44) and were chemo-resistant to various cytotoxic drugs (cisplatin, fluorouracil, paclitaxel, and docetaxel). Adherent HNSC-CSCs at the limiting dilution (1000 cells) produced tumors in nude mice. Adherent HNSC-CSCs also showed less spontaneous apoptotic cell death and were more competent to lentiviral transduction than suspended HNSC-CSCs. In conclusion, compared to suspension cultures, adherence on type IV collagen-coated culture plates provides better experimental conditions for HNSC-CSC expansion, which should facilitate various refined cellular studies.  相似文献   
884.
885.
Kinesin-1 is a motor protein that moves stepwise along microtubules by employing dimerized kinesin heavy chain (Khc) subunits that alternate cycles of microtubule binding, conformational change, and ATP hydrolysis. Mutations in the Drosophila Khc gene are known to cause distal paralysis and lethality preceded by the occurrence of dystrophic axon terminals, reduced axonal transport, organelle-filled axonal swellings, and impaired action potential propagation. Mutations in the equivalent human gene, Kif5A, result in similar problems that cause hereditary spastic paraplegia (HSP) and Charcot-Marie-Tooth type 2 (CMT2) distal neuropathies. By comparing the phenotypes and the complementation behaviors of a large set of Khc missense alleles, including one that is identical to a human Kif5A HSP allele, we identified three routes to suppression of Khc phenotypes: nutrient restriction, genetic background manipulation, and a remarkable intramolecular complementation between mutations known or likely to cause reciprocal changes in the rate of microtubule-stimulated ADP release by kinesin-1. Our results reveal the value of large-scale complementation analysis for gaining insight into protein structure-function relationships in vivo and point to possible paths for suppressing symptoms of HSP and related distal neuropathies.  相似文献   
886.
Blood monocytes recognize Gram-negative bacteria through the TLR4, which signal via MyD88- and TRIF-dependent pathway to trigger an immune-inflammatory response. However, a dysregulated inflammatory response by these cells often leads to severe pathologies such as sepsis. We investigated the role of CD16 in the regulation of human monocyte response to Gram-negative endotoxin and sepsis. Blood monocytes from sepsis patients demonstrated an upregulation of several TRIF-dependent genes as well as a selective expansion of CD16-expressing (CD16(+)) monocytes. Gene expression and biochemical studies revealed CD16 to regulate the TRIF-dependent TLR4 pathway in monocytes by activating Syk, IFN regulatory factor 3, and STAT1, which resulted in enhanced expression of IFNB, CCL5, and CXCL10. CD16 also upregulated the expression of IL-1R-associated kinase M and IL-1 receptor antagonist, which are negative regulators of the MyD88-dependent pathway. CD16 overexpression or small interfering RNA knockdown in monocytes confirmed the above findings. Interestingly, these results were mirrored in the CD16(+) monocyte subset isolated from sepsis patients, providing an in vivo confirmation to our findings. Collectively, the results from the current study demonstrate CD16 as a key regulator of the TRIF-dependent TLR4 pathway in human monocytes and their CD16-expressing subset, with implications in sepsis.  相似文献   
887.
The inner ear, composed of the cochlea and the vestibule, is a specialized sensory organ for hearing and balance. Although the inner ear has been known as an immune-privileged organ, there is emerging evidence indicating an active immune reaction of the inner ear. Inner ear inflammation can be induced by the entry of proinflammatory molecules derived from middle ear infection. Because middle ear infection is highly prevalent in children, middle ear infection-induced inner ear inflammation can impact the normal development of language and motor coordination. Previously, we have demonstrated that the inner ear fibrocytes (spiral ligament fibrocytes) are able to recognize nontypeable Haemophilus influenzae, a major pathogen of middle ear infection, and upregulate a monocyte-attracting chemokine through TLR2-dependent NF-κB activation. In this study, we aimed to determine the molecular mechanism involved in nontypeable H. influenzae-induced cochlear infiltration of polymorphonuclear cells. The rat spiral ligament fibrocytes were found to release CXCL2 in response to nontypeable H. influenzae via activation of c-Jun, leading to the recruitment of polymorphonuclear cells to the cochlea. We also demonstrate that MEK1/ERK2 signaling pathway is required for nontypeable H. influenzae-induced CXCL2 upregulation in the rat spiral ligament fibrocytes. Two AP-1 motifs in the 5'-flanking region of CXCL2 appeared to function as a nontypeable H. influenzae-responsive element, and the proximal AP-1 motif was found to have a higher binding affinity to nontypeable H. influenzae-activated c-Jun than that of the distal one. Our results will enable us better to understand the molecular pathogenesis of middle ear infection-induced inner ear inflammation.  相似文献   
888.
889.
A hallmark of the bacterial twin-arginine translocation (Tat) pathway is its ability to export folded proteins. Here, we discovered that overexpressed Tat substrate proteins form two distinct, long-lived translocation intermediates that are readily detected by immunolabeling methods. Formation of the early translocation intermediate Ti-1, which exposes the N- and C-termini to the cytoplasm, did not require an intact Tat translocase, a functional Tat signal peptide, or a correctly folded substrate. In contrast, formation of the later translocation intermediate, Ti-2, which exhibits a bitopic topology with the N-terminus in the cytoplasm and C-terminus in the periplasm, was much more particular, requiring an intact translocase, a functional signal peptide, and a correctly folded substrate protein. The ability to directly detect Ti-2 intermediates was subsequently exploited for a new protein engineering technology called MAD-TRAP (membrane-anchored display for Tat-based recognition of associating proteins). Through the use of just two rounds of mutagenesis and screening with MAD-TRAP, the intracellular folding and antigen-binding activity of a human single-chain antibody fragment were simultaneously improved. This approach has several advantages for library screening, including the unique involvement of the Tat folding quality control mechanism that ensures only native-like proteins are displayed, thus eliminating poorly folded sequences from the screening process.  相似文献   
890.
Interferon (IFN) signaling is crucial for antiviral immunity. While type I IFN signaling is mediated by STAT1, STAT2, and IRF9, type II IFN signaling requires only STAT1. Here, we studied the roles of these signaling factors in the host response to systemic infection with lymphocytic choriomeningitis virus (LCMV). In wild-type (WT) mice and mice lacking either STAT2 or IRF9, LCMV infection was nonlethal, and the virus either was cleared (WT) or established persistence (STAT2 knockout [KO] and IRF9 KO). However, in the case of STAT1 KO mice, LCMV infection was lethal and accompanied by severe multiorgan immune pathology, elevated expression of various cytokine genes in tissues, and cytokines in the serum. This lethal phenotype was unaltered by the coabsence of the gamma interferon (IFN-γ) receptor and hence was not dependent on IFN-γ. Equally, the disease was not due to a combined defect in type I and type II IFN signaling, as IRF9 KO mice lacking the IFN-γ receptor survived infection with LCMV. Clearance of LCMV is mediated normally by CD8(+) T cells. However, the depletion of these cells in LCMV-infected STAT1 KO mice was delayed, but did not prevent, lethality. In contrast, depletion of CD4(+) T cells prevented lethality in LCMV-infected STAT1 KO mice and was associated with a reduction in tissue immune pathology. These studies highlight a fundamental difference in the role of STAT1 versus STAT2 and IRF9. While all three factors are required to limit viral replication and spread, only STAT1 has the unique function of preventing the emergence of a lethal antiviral CD4(+) T-cell response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号