首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5444篇
  免费   408篇
  国内免费   9篇
  5861篇
  2023年   19篇
  2022年   62篇
  2021年   80篇
  2020年   68篇
  2019年   75篇
  2018年   117篇
  2017年   107篇
  2016年   144篇
  2015年   261篇
  2014年   302篇
  2013年   358篇
  2012年   499篇
  2011年   443篇
  2010年   250篇
  2009年   241篇
  2008年   356篇
  2007年   292篇
  2006年   271篇
  2005年   275篇
  2004年   228篇
  2003年   232篇
  2002年   173篇
  2001年   145篇
  2000年   129篇
  1999年   117篇
  1998年   33篇
  1997年   50篇
  1996年   24篇
  1995年   23篇
  1994年   27篇
  1993年   22篇
  1992年   46篇
  1991年   42篇
  1990年   35篇
  1989年   36篇
  1988年   36篇
  1987年   28篇
  1986年   26篇
  1985年   22篇
  1984年   13篇
  1983年   19篇
  1982年   11篇
  1979年   12篇
  1978年   13篇
  1977年   8篇
  1976年   12篇
  1975年   8篇
  1974年   8篇
  1972年   8篇
  1971年   8篇
排序方式: 共有5861条查询结果,搜索用时 15 毫秒
81.
XPF forms a heterodimeric complex with ERCC1 and is required for the repair of DNA interstrand cross-links. In association with ERCC1, it is involved in production of the 5' incision at the site of a psoralen interstrand cross-link as well as the 3' incision. The present study was carried out to determine the functional domains of XPF that are important in the production of the 5' and 3' incisions that occur at a site of a psoralen interstrand cross-link. Monoclonal antibodies (mAbs) were utilized that had been generated against polypeptide fragments of XPF and affinity-mapped to specific regions of XPF. These mAbs were examined for their ability to differentially inhibit production of dual incisions in DNA by normal human chromatin-associated protein extracts that contain XPF and ERCC1. These studies show that two regions of XPF, one N-terminal region from amino acids 12-166 and one C-terminal region from amino acids 702-854, are the most important in the production of the 5' incision. The same N-terminal region and the C-terminal region from amino acids 702-916 are also involved in the 3' incision, though to a much lesser extent. Since this C-terminal region corresponds to the proposed site of interaction of ERCC1 with XPF, these results suggest that binding of ERCC1 to XPF is critical for its ability to produce the 5' and 3' incisions at the site of an interstrand cross-link, possibly through activation or regulation of the endonucleolytic activity of the N-terminal domain of XPF.  相似文献   
82.
We have studied the utility of the yeast protein YCF1, which detoxifies cadmium by transporting it into vacuoles, for the remediation of lead and cadmium contamination. We found that the yeast YCF1-deletion mutant DTY167 was hypersensitive to Pb(II) as compared with wild-type yeast. DTY167 cells overexpressing YCF1 were more resistant to Pb(II) and Cd(II) than were wild-type cells, and accumulated more lead and cadmium. Analysis of transgenic Arabidopsis thaliana plants overexpressing YCF1 showed that YCF1 is functionally active and that the plants have enhanced tolerance of Pb(II) and Cd(II) and accumulated greater amounts of these metals. These results suggest that transgenic plants expressing YCF1 may be useful for phytoremediation of lead and cadmium.  相似文献   
83.
Nitric oxide (NO) in articular chondrocytes regulates differentiation, survival, and inflammatory responses by modulating ERK-1 and -2, p38 kinase, and protein kinase C (PKC) alpha and zeta. In this study, we investigated the effects of the actin cytoskeletal architecture on NO-induced dedifferentiation, apoptosis, cyclooxygenase (COX)-2 expression, and prostaglandin E2 production in articular chondrocytes, with a focus on ERK-1/-2, p38 kinase, and PKC signaling. Disruption of the actin cytoskeleton by cytochalasin D (CD) inhibited NO-induced apoptosis, dedifferentiation, COX-2 expression, and prostaglandin E2 production in chondrocytes cultured on plastic or during cartilage explants culture. CD treatment did not affect ERK-1/-2 activation but blocked the signaling events necessary for NO-induced dedifferentiation, apoptosis, and COX-2 expression such as activation of p38 kinase and inhibition of PKCalpha and -zeta. CD also suppressed activation of downstream signaling of p38 kinase and PKC, such as NF-kappaB activation, p53 accumulation, and caspase-3 activation, which are necessary for NO-induced apoptosis. NO production in articular chondrocytes caused down-regulation of phosphatidylinositol (PI) 3-kinase and Akt activities. The down-regulation of PI 3-kinase and Akt was blocked by CD treatment, and the CD effects on apoptosis, p38 kinase, and PKCalpha and -zeta were abolished by the inhibition of PI 3-kinase with LY294002. Our results collectively indicate that the actin cytoskeleton mediates NO-induced regulatory effects in chondrocytes by modulating down-regulation of PI 3-kinase and Akt, activation of p38 kinase, and inhibition of PKCalpha and -zeta  相似文献   
84.
85.
Therapeutic ultrasound was administered to patients suffering from bone fracture with FDA approval. Bone and cartilage are piezoelectric materials. To investigate the effects of piezoelectricity on the cells of chondrogenic lineage, we applied ultrasound stimulation on an AT-cut quartz coverslip to generate electric field fluctuations. The bone-marrow-derived mesenchymal stem cells (BMMSC) and primary chondrocytes were cultured on either glass or quartz coverslips for ultrasound stimulation. The cells were immunofluorescent-labeled for the assessment of cell arrangement and ciliary orientation. Ultrasound and piezoelectricity both stimulate cell migration and disrupt ciliary orientation induced by directional migration. In particular, piezoelectric effects on cell rearrangement can be abolished by the inhibitor specifically targeting atypical Protein kinase C zeta (PKCζ). Our findings shed light on the possibility of cellular modulation by using piezoelectric manipulation.  相似文献   
86.
Hearts with overexpression of anchored lipoprotein lipase (LpL) by cardiomyocytes (hLpL(GPI) mice) develop a lipotoxic cardiomyopathy. To characterize cardiac fatty acid (FA) and triglyceride (TG) metabolism in these mice and to determine whether changes in lipid metabolism precede cardiac dysfunction, hearts from young mice were perfused in Langendorff mode with [14C]palmitate. In hLpL(GPI) hearts, FA uptake and oxidation were decreased by 59 and 82%, respectively. This suggests reliance on an alternative energy source, such as TG. Indeed, these hearts oxidized 88% more TG. Hearts from young hLpL(GPI) mice also had greater uptake of intravenously injected cholesteryl ester-labeled Intralipid and VLDL. To determine whether perfusion of normal hearts would mimic the metabolic alterations found in hLpL(GPI) mouse hearts, wild-type hearts were perfused with [14C]palmitate and either human VLDL or Intralipid (0.4 mM TG). Both sources of TG reduced [14C]palmitate uptake (48% with VLDL and 45% with Intralipid) and FA oxidation (71% with VLDL and 65% with Intralipid). Addition of either heparin or LpL inhibitor P407 to Intralipid-containing perfusate restored [14C]palmitate uptake and confirmed that Intralipid inhibition requires local LpL. Our data demonstrate that reduced FA uptake and oxidation occur before mechanical dysfunction in hLpL(GPI) lipotoxicity. This physiology is reproduced with perfusion of hearts with TG-containing particles. Together, the results demonstrate that cardiac uptake of TG-derived FA reduces utilization of albumin-FA.  相似文献   
87.

Aims

Intestinal alkaline phosphatase (IAP) is an intestinal brush border enzyme that is shown to function as a gut mucosal defense factor, but its defensive mechanism remains unclear. The aims of this study were to evaluate the effect of IAP on intestinal epithelial cells and macrophages, and on chronic colitis in interleukin-10-deficient (IL-10−/−) mice.

Main methods

Human intestinal epithelial cells COLO 205 and peritoneal macrophages from IL-10−/− mice were pretreated with IAP and then stimulated with lipopolysaccharide (LPS). IL-8 secretion from COLO205 cells and TNF-α, IL-6, IL-12 from peritoneal macrophages were measured by ELISA. Electrophoretic mobility shift assay was used to assess the DNA binding activity of NF-κB and IκBα phosphorylation/degradation was evaluated by immunoblot assay in COLO 205. For the in vivo study, colitis was induced in IL-10−/− mice with piroxicam, the mice were then treated with 100 or 300 units of IAP by oral gavage for 2 weeks. Colitis was quantified by histopathologic scoring, and the phosphorylation of IκBα in the colonic mucosa was assessed using immunohistochemistry.

Key findings

IAP significantly inhibited LPS-induced inflammatory cytokine production in both IECs and peritoneal macrophages. IAP also attenuated LPS-induced NF-κB binding activity and IκBα phosphorylation/degradation in IECs. Oral administration of IAP significantly reduced the severity of colitis and down-regulated colitis-induced IκBα phosphorylation in IL-10−/− mice.

Significance

IAP may inhibit the activation of intestinal epithelial cells and peritoneal macrophages, and may attenuate chronic murine colitis. This finding suggests that IAP supplementation is a potential therapeutic option for inflammatory bowel disease.  相似文献   
88.
We investigated the influence of stand density [938 tree ha−1 for high stand density (HD), 600 tree ha−1 for medium stand density (MD), and 375 tree ha−1 for low stand density (LD)] on soil CO2 efflux (R S) in a 70-year-old natural Pinus densiflora S. et Z. forest in central Korea. Concurrent with R S measurements, we measured litterfall, total belowground carbon allocation (TBCA), leaf area index (LAI), soil temperature (ST), soil water content (SWC), and soil nitrogen (N) concentration over a 2-year period. The R S (t C ha−1 year−1) and leaf litterfall (t C ha−1 year−1) values varied with stand density: 6.21 and 2.03 for HD, 7.45 and 2.37 for MD, and 6.96 and 2.23 for LD, respectively. In addition, R S was correlated with ST (R 2 = 0.77–0.80, P < 0.001) and SWC (R 2 = 0.31–0.35, P < 0.001). It appeared that stand density influenced R S via changes in leaf litterfall, LAI and SWC. Leaf litterfall (R 2 = 0.71), TBCA (R 2 = 0.64–0.87), and total soil N contents in 2007 (R 2 = 0.94) explained a significant amount of the variance in R S (P < 0.01). The current study showed that stand density is one of the key factors influencing R S due to the changing biophysical and environmental factors in P. densiflora.  相似文献   
89.
90.
Fundamental to intralimb coordination in the lower extremity, ankle-knee synergy induced by motor irradiation has long been employed to secure facilitation of paralyzed muscles. This study, a companion research subsequent to the time amplitude analysis of surface electromyography in part 1, was to investigate the recruitment strategy of irradiated muscles and prime movers during ankle isokinetic contraction at different contraction speeds (30, 60, 120 and 240 degrees/s) with time frequency analysis. The results indicated the recruitment strategies of the major irradiated muscles (ipsilateral rectus femoris/ipsilateral biceps femoris) and prime movers (anterior tibialis/gastrocnemius) were time-dependent and significantly different in terms of the instantaneous median frequency. In general, the prime movers for ankle isokinetic concentric contraction demonstrated a similar recruitment strategy, irrespective of different contraction speeds. This finding is consistent with the idea of generalized motor programs that speed is one of the constraint parameters supplied to motor programs. Nevertheless, the recruitment strategies of the irradiated muscles were highly inconsistent, varying across trials at different contraction speeds, and were not relevant to those of the prime movers. In addition, the recruitment in the irradiated muscles seemly limited to motor units of low threshold, in spite of maximal voluntary contraction of the prime movers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号