首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1143篇
  免费   70篇
  国内免费   1篇
  2024年   2篇
  2023年   2篇
  2022年   5篇
  2021年   22篇
  2020年   15篇
  2019年   16篇
  2018年   32篇
  2017年   22篇
  2016年   35篇
  2015年   63篇
  2014年   76篇
  2013年   77篇
  2012年   83篇
  2011年   80篇
  2010年   45篇
  2009年   56篇
  2008年   61篇
  2007年   82篇
  2006年   45篇
  2005年   52篇
  2004年   55篇
  2003年   48篇
  2002年   37篇
  2001年   28篇
  2000年   31篇
  1999年   22篇
  1997年   3篇
  1996年   4篇
  1995年   5篇
  1993年   2篇
  1992年   11篇
  1991年   6篇
  1990年   9篇
  1989年   16篇
  1988年   5篇
  1987年   10篇
  1986年   7篇
  1985年   4篇
  1984年   7篇
  1983年   5篇
  1982年   5篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1973年   2篇
  1971年   3篇
  1970年   1篇
  1965年   2篇
  1934年   1篇
排序方式: 共有1214条查询结果,搜索用时 542 毫秒
141.
142.
A novel beta-proteobacterium, designated BXN5-27(T), was isolated from soil of a ginseng field of Baekdu Mountain in China, and was characterized using a polyphasic approach. The strain was Gram-staining-negative, aerobic, motile, non-spore-forming, and rod shaped. Strain BXN5-27(T) exhibited beta-glucosidase activity that was responsible for its ability to transform ginsenoside Rb? (one of the dominant active components of ginseng) to compound Rd. Phylogenetic analysis based on 16S rRNA gene sequences showed that this strain belonged to the family Comamonadaceae; it was most closely related to Ramlibacter henchirensis TMB834(T) and Ramlibacter tataouinensis TTB310(T) (96.4% and 96.3% similarity, respectively). The G+C content of the genomic DNA was 68.1%. The major menaquinone was Q-8. The major fatty acids were C??:?, summed feature 4 (comprising C??:? omega7c and/or iso-C??:? 2OH), and C??:? cyclo. Genomic and chemotaxonomic data supported the affiliation of strain BXN5-27(T) to the genus Ramlibacter. However, physiological and biochemical tests differentiated it phenotypically from the other established species of Ramlibacter. Therefore, the isolate represents a novel species, for which the name Ramlibacter ginsenosidimutans sp. nov. is proposed, with the type strain being BXN5-27(T) (= DSM 23480(T) = LMG 24525(T) = KCTC 22276(T)).  相似文献   
143.
In this paper, the kinetics of a cloned special glucosidase, named ginsenosidase type III hydrolyzing 3-O-glucoside of multi-protopanaxadiol (PPD)-type ginsenosides, were investigated. The gene (bgpA) encoding this enzyme was cloned from a Terrabacter ginsenosidimutans strain and then expressed in E. coli cells. Ginsenosidase type III was able to hydrolyze 3-O-glucoside of multi-PPD-type ginsenosides. For instance, it was able to hydrolyze the 3-O-β-D-(1-->2)-glucopyranosyl of Rb1 to gypenoside XVII, and then to further hydrolyze the 3-O-β-D-glucopyranosyl of gypenoside XVII to gypenoside LXXV. Similarly, the enzyme could hydrolyze the glucopyranosyls linked to the 3-O- position of Rb2, Rc, Rd, Rb3, and Rg3. With a larger enzyme reaction Km value, there was a slower enzyme reaction speed; and the larger the enzyme reaction Vmax value, the faster the enzyme reaction speed was. The Km values from small to large were 3.85 mM for Rc, 4.08 mM for Rb1, 8.85 mM for Rb3, 9.09 mM for Rb2, 9.70 mM for Rg3(S), 11.4 mM for Rd and 12.9 mM for F2; and Vmax value from large to small was 23.2 mM/h for Rc, 16.6 mM/h for Rb1, 14.6 mM/h for Rb3, 14.3 mM/h for Rb2, 1.81mM/h for Rg3(S), 1.40 mM/h for Rd, and 0.41 mM/h for F2. According to the Vmax and Km values of the ginsenosidase type III, the hydrolysis speed of these substrates by the enzyme was Rc>Rb1>Rb3>Rb2>Rg3(S)>Rd>F2 in order.  相似文献   
144.
Lim S  Bae E  Kim HS  Kim TA  Byun K  Kim B  Hong S  Im JP  Yun C  Lee B  Lee B  Park SH  Letterio J  Kim SJ 《PloS one》2012,7(3):e32705
Transforming growth factor-β1 (TGF-β1) is an important anti-inflammatory cytokine that modulates and resolves inflammatory responses. Recent studies have demonstrated that inflammation enhances neoplastic risk and potentiates tumor progression. In the evolution of cancer, pro-inflammatory cytokines such as IL-1β must overcome the anti-inflammatory effects of TGF-β to boost pro-inflammatory responses in epithelial cells. Here we show that IL-1β or Lipopolysaccharide (LPS) suppresses TGF-β-induced anti-inflammatory signaling in a NF-κB-independent manner. TRAF6, a key molecule in IL-1β signaling, mediates this suppressive effect through interaction with the type III TGF-β receptor (TβRIII), which is TGF-β-dependent and requires type I TGF-β receptor (TβRI) kinase activity. TβRI phosphorylates TβRIII at residue S829, which promotes the TRAF6/TβRIII interaction and consequent sequestration of TβRIII from the TβRII/TβRI complex. Our data indicate that IL-1β enhances the pro-inflammatory response by suppressing TGF-β signaling through TRAF6-mediated sequestration of TβRIII, which may be an important contributor to the early stages of tumor progression.  相似文献   
145.
Similar to ubiquitin, regulatory roles for NEDD8 (neural precursor cell-expressed developmentally down-regulated 8) are being clarified during cell growth, signal transduction, immune response, and development. However, NEDD8 targets and their functional alterations are not well known. Regulator of calcineurin 1 (RCAN1/DSCR1P1) is located near the Down syndrome critical region on the distal part of chromosome 21, and its gene product is an endogenous inhibitor of calcineurin signaling. RCAN1 is modified by ubiquitin and consequently undergoes proteasomal degradation. Here we report that NEDD8 is conjugated to RCAN1 (RCAN1-1S) via three lysine residues, K96, K104, and K107. Neddylation enhances RCAN1 protein stability without affecting its cellular location. In addition, we found that neddylation significantly inhibits proteasomal degradation of RCAN1, which may underlie the ability of NEDD8 to enhance RCAN1 stability. Furthermore, neddylation increases RCAN1 binding to calcineurin, which potentiates its inhibitory activity toward downstream NFAT signaling. The present study provides a new regulatory mechanism of RCAN1 function and highlights an important role for diverse RCAN1-involved cellular physiology.  相似文献   
146.
Changes in plasma lipoprotein profiles, especially low levels of high-density lipoprotein (HDL), are a common biomarker for several inflammatory and immune diseases, including atherosclerosis and rheumatoid arthritis. We examined the effect of simvastatin on HDL-induced anti-inflammatory actions. HDL and sphingosine 1-phosphate (S1P), a bioactive lipid component of the lipoprotein, inhibited TNF alpha-induced expression of VCAM-1, which was associated with NO synthase (NOS) activation, in human umbilical venous endothelial cells. The HDL- but not S1P-induced anti-inflammatory actions were enhanced by a prior treatment of the cells with simvastatin in a manner sensitive to mevalonic acid. Simvastatin stimulated the expression of scavenger receptor class B type I (SR-BI) and endothelial NOS. As for S1P receptors, however, the statin inhibited the expression of S1P(3) receptor mRNA but caused no detectable change in S1P(1) receptor expression. The reconstituted HDL, a stimulator of SR-BI, mimicked HDL actions in a simvastatin-sensitive manner. The HDL- and reconstituted HDL-induced actions were blocked by small interfering RNA specific to SR-BI regardless of simvastatin treatment. The statin-induced expression of SR-BI was attenuated by constitutively active RhoA and small interfering RNA specific to peroxisome proliferator-activated receptor-alpha. Administration of simvastatin in vivo stimulated endothelial SR-BI expression, which was accompanied by the inhibition of the ex vivo monocyte adhesion in aortas from TNF alpha-injected mice. In conclusion, simvastatin induces endothelial SR-BI expression through a RhoA- and peroxisome proliferator-activated receptor-alpha-dependent mechanism, thereby enhancing the HDL-induced activation of NOS and the inhibition of adhesion molecule expression.  相似文献   
147.
Prenatal exposure to polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) can affect neurobehavioral development of infants and children. This effect may be mediated through disruption of thyroid hormone homeostasis. However, epidemiological studies reveal no consistent influence of PCDD/Fs and PCBs on thyroid status and neurodevelopment at environmental background levels. The effects may resolve with time of further decreasing exposure to these compounds. The aim of this study was to find out if there are still effects related to prenatal PCDD/F and PCB observable at the meanwhile decreased levels of exposure by using the same methods which have been applied in similar studies during the last 10 years in Europe. The birth cohort study was initiated in the year 2000 in the industrialized city of Duisburg, Germany. 232 healthy mother-infant pairs were recruited between 2000 and 2002. Dioxins, dioxin-like PCBs and six indicator PCBs were analyzed in maternal blood during pregnancy and in maternal milk following extraction and sample clean-up by HRGC/HRMS. Thyroid stimulating hormone (TSH), total thyroxine (T4), total triiodothyronine (T3), free thyroxine (FT4) and free triiodothyronine (FT3) were measured in serum samples of the pregnant women and in cord serum samples by chemiluminescent immunometric assay. Neurological examinations were performed at ages 2 weeks and 18 months using the neurological optimality score (NOS), mental and motor development were assessed using the Bayley Scales of Infant Development (BSID) at ages 12 and 24 months. Multiple linear regression analysis was used to describe the association of PCDD/F and PCB in maternal blood or milk with the outcome measurements after adjustment for confounding. Blood levels (n=182) of WHO 2005 toxic equivalents (TEQ) (PCDD/F+PCB) were in the range of 3.8-58.4 pg/glipid base (median: 19.3 pg/glipid base). The corresponding data for human milk (n=149) were 2.6-52.4 pg/glipid base (median: 19.7 pg/glipid base). Multiple regression analysis showed no decrease of thyroid hormones related to WHO 2005 TEQ in blood and milk of mothers and their newborns. Furthermore, no associations between exposure and neurological and developmental measures were observed. This study supports the view that the current decreased exposure to PCDD/Fs and PCBs does not impair thyroid function of newborns and neurodevelopment of infants until the age of 24 months.  相似文献   
148.
We present a computational study of reentry wave propagation using electrophysiological models of human cardiac cells and the associated magnetic field map of a human heart. We examined the details of magnetic field variation and related physiological parameters for reentry waves in two-dimensional (2-D) human atrial tissue and a three-dimensional (3-D) human ventricle model. A 3-D mesh system representing the human ventricle was reconstructed from the surface geometry of a human heart. We used existing human cardiac cell models to simulate action potential (AP) propagation in atrial tissue and 3-D ventricular geometry, and a finite element method and the Galerkin approximation to discretize the 3-D domain spatially. The reentry wave was generated using an S1-S2 protocol. The calculations of the magnetic field pattern assumed a horizontally layered conductor for reentry wave propagation in the 3-D ventricle. We also compared the AP and magnetocardiograph (MCG) magnitudes during reentry wave propagation to those during normal wave propagation. The temporal changes in the reentry wave motion and magnetic field map patterns were also analyzed using two well-known MCG parameters: the current dipole direction and strength. The current vector in a reentry wave forms a rotating spiral. We delineated the magnetic field using the changes in the vector angle during a reentry wave, demonstrating that the MCG pattern can be helpful for theoretical analysis of reentry waves.  相似文献   
149.
150.
SMS [SM (sphingomyelin) synthase] is a class of enzymes that produces SM by transferring a phosphocholine moiety on to ceramide. PC (phosphatidylcholine) is believed to be the phosphocholine donor of the reaction with consequent production of DAG (diacylglycerol), an important bioactive lipid. In the present study, by modulating SMS1 and SMS2 expression, the role of these enzymes on the elusive regulation of DAG was investigated. Because we found that modulation of SMS1 or SMS2 did not affect total levels of endogenous DAG in resting cells, whereas they produce DAG in vitro, the possibility that SMSs could modulate subcellular pools of DAG, once acute activation of the enzymes is triggered, was investigated. Stimulation of SM synthesis was induced by either treatment with short-chain ceramide analogues or by increasing endogenous ceramide at the plasma membrane, and a fluorescently labelled conventional C1 domain [from PKC (protein kinase C)] enhanced in its DAG binding activity was used to probe subcellular pools of DAG in the cell. With this approach, we found, using confocal microscopy and subcellular fractionation, that modulation of SMS1 and, to a lesser extent, SMS2 affected the formation of DAG at the Golgi apparatus. Similarly, down-regulation of SMS1 and SMS2 reduced the localization of the DAG-binding protein PKD (protein kinase D) to the Golgi. These results provide direct evidence that both enzymes are capable of regulating the formation of DAG in cells, that this pool of DAG is biologically active, and for the first time directly implicate SMS1 and SMS2 as regulators of DAG-binding proteins in the Golgi apparatus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号