首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5874篇
  免费   426篇
  国内免费   5篇
  6305篇
  2024年   8篇
  2023年   27篇
  2022年   97篇
  2021年   128篇
  2020年   101篇
  2019年   117篇
  2018年   204篇
  2017年   160篇
  2016年   254篇
  2015年   398篇
  2014年   395篇
  2013年   438篇
  2012年   570篇
  2011年   507篇
  2010年   303篇
  2009年   274篇
  2008年   369篇
  2007年   374篇
  2006年   297篇
  2005年   260篇
  2004年   249篇
  2003年   229篇
  2002年   163篇
  2001年   94篇
  2000年   81篇
  1999年   68篇
  1998年   28篇
  1997年   25篇
  1996年   14篇
  1995年   14篇
  1994年   6篇
  1993年   5篇
  1992年   8篇
  1991年   7篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1976年   2篇
  1975年   1篇
  1971年   2篇
排序方式: 共有6305条查询结果,搜索用时 15 毫秒
51.
Protein glycosylation, the most universal and diverse post-translational modification, can affect protein secretion, stability, and immunogenicity. The structures of glycans attached to proteins are quite diverse among different organisms and even within yeast species. In yeast, protein glycosylation plays key roles in the quality control of secretory proteins, and particularly in maintaining cell wall integrity. Moreover, in pathogenic yeasts, glycans assembled on cell-surface glycoproteins can mediate their interactions with host cells. Thus, a comprehensive understanding of protein glycosylation in various yeast species and defining glycan structure characteristics can provide useful information for their biotechnological and clinical implications. Yeast-specific glycans are a target for glyco-engineering; implementing human-type glycosylation pathways in yeast can aid the production of recombinant glycoproteins with therapeutic potential. The virulenceassociated glycans of pathogenic yeasts could be exploited as novel targets for antifungal agents. Nowadays, several glycomics techniques facilitate the generation of species-and strain-specific glycome profiles and the delineation of modified glycan structures in mutant and engineered yeast cells. Here, we present the protocols employed in our laboratory to investigate the N-and O-glycan chains released from purified glycoproteins or cell wall mannoproteins in several yeast species.  相似文献   
52.
The ovarian steroid hormone progesterone is a major regulator of uterine function. The actions of this hormone is mediated through its cognate receptor, the progesterone receptor, Pgr. Ablation of the Pgr has shown that this receptor is critical for all female reproductive functions including the ability of the uterus to support and maintain the development of the implanting mouse embryo. High density DNA microarray analysis has identified direct and indirect targets of Pgr action. One of the targets of Pgr action is a member of the Hedgehog morphogen Indian Hedgehog, Ihh. Ihh and members of the Hh signaling cascade show a coordinate expression pattern in the mouse uterus during the preimplantation period of pregnancy. The expression of Ihh and its receptor Patched-1, Ptc1, as well as, down stream targets of Ihh-Ptch1 signaling, such as the orphan nuclear receptor COUP-TF II show that this morphogen pathway mediates communication between the uterine epithelial and stromal compartments. The members of the Ihh signaling axis may function to coordinate the proliferation, vascularization and differentiation of the uterine stroma during pregnancy. This analysis demonstrates that progesterone regulates uterine function in the mouse by coordinating the signals from the uterine epithelium to stroma in the preimplantation mouse uterus.  相似文献   
53.
Platelets contribute to the development of metastasis, the most common cause of mortality in cancer patients, but the precise role that anti-platelet drugs play in cancer treatment is not defined. Metastatic tumor cells can produce platelet alphaIIb beta3 activators, such as ADP and thromboxane A(2) (TXA(2)). Inhibitors of platelet beta3 integrins decrease bone metastases in mice but are associated with significant bleeding. We examined the role of a novel soluble apyrase/ADPase, APT102, and an inhibitor of TXA(2) synthesis, acetylsalicylic acid (aspirin or ASA), in mouse models of experimental bone metastases. We found that treatment with ASA and APT102 in combination (ASA + APT102), but not either drug alone, significantly decreased breast cancer and melanoma bone metastases in mice with fewer bleeding complications than observed with alphaIIb beta3 inhibition. ASA + APT102 diminished tumor cell induced platelet aggregation but did not directly alter tumor cell viability. Notably, APT102 + ASA treatment did not affect initial tumor cell distribution and similar results were observed in beta3-/- mice. These results show that treatment with ASA + APT102 decreases bone metastases without significant bleeding complications. Anti-platelet drugs such as ASA + APT102 could be valuable experimental tools for studying the role of platelet activation in metastasis as well as a therapeutic option for the prevention of bone metastases.  相似文献   
54.
55.
56.
57.
58.
Allyl isothiocyanate (AITC) is a phytochemical found in cruciferous vegetables that has known chemopreventive and chemotherapeutic activities. Thus far, the antiangiogenic activity of AITC has not been reported in in vivo studies. Herein, we investigated the effect of AITC on angiogenesis and inflammation in a mouse model of colitis. Experimental colitis was induced in mice by administering 3% dextran sulfate sodium via drinking water. To monitor the activity of AITC in this model, we measured body weight, disease activity indices, histopathological scores, microvascular density, myeloperoxidase activity, F4/80 staining, inducible nitric oxide synthase (iNOS) expression, cyclooxygenase-2 (COX-2) expression, and vascular endothelial growth factor (VEGF)-A/VEGF receptor 2 (VEGFR2) expression in the mice. We found that AITC-treated mice showed less weight loss, fewer clinical signs of colitis, and longer colons than vehicle-treated mice. AITC treatment also significantly lessened the disruption of colonic architecture that is normally associated with colitis and repressed the microvascularization response. Further, AITC treatment reduced both leukocyte recruitment and macrophage infiltration into the inflamed colon, and the mechanism these activities involved repressing iNOS and COX-2 expression. Finally, AITC attenuated the expression of VEGF-A and VEGFR2. Thus, AITC may have potential application in treating conditions marked by inflammatory-driven angiogenesis and mucosal inflammation.  相似文献   
59.
To study the genetic diversity and population structure of Lilium tsingtauense Gilg (Qingdao Lily), we collected 648 samples from 12 sites in China and Korea, and analyzed their Inter-Simple Sequence Repeat (ISSR) molecular markers and morphological characters. ISSR data revealed a relatively high genetic diversity at the species level, with 72.31% polymorphic loci, effective numbers of alleles of 1.437, average expected heterozygosity of 0.231 and Shannon’s information index of 0.369. Considerable genetic differentiation among the natural populations (GST = 0.144) and the gene flow (Nm = 1.487) were detected. AMOVA analysis and UPGMA-dendrogram suggested a hierarchical regional structure among populations, and spatial autocorrelation analysis showed a micro-scaled spatial structure. Furthermore, there was a high correlation between morphological characters and genetic parameters obtained from ISSR parameters. There was only a low genetic differentiation among the different morphological types of L. tsingtauence in China. Based on these findings, we recommend in situ and ex situ conservation strategies for the preservation of L. tsingtauense.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号