首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59443篇
  免费   5009篇
  国内免费   54篇
  64506篇
  2023年   208篇
  2022年   604篇
  2021年   1039篇
  2020年   595篇
  2019年   780篇
  2018年   1177篇
  2017年   945篇
  2016年   1667篇
  2015年   2712篇
  2014年   3029篇
  2013年   3538篇
  2012年   4596篇
  2011年   4323篇
  2010年   2774篇
  2009年   2436篇
  2008年   3506篇
  2007年   3245篇
  2006年   2989篇
  2005年   2687篇
  2004年   2640篇
  2003年   2343篇
  2002年   2002篇
  2001年   1715篇
  2000年   1609篇
  1999年   1286篇
  1998年   570篇
  1997年   506篇
  1996年   437篇
  1995年   429篇
  1994年   343篇
  1993年   331篇
  1992年   712篇
  1991年   569篇
  1990年   523篇
  1989年   520篇
  1988年   434篇
  1987年   422篇
  1986年   346篇
  1985年   366篇
  1984年   293篇
  1983年   241篇
  1982年   206篇
  1981年   178篇
  1980年   176篇
  1979年   239篇
  1978年   217篇
  1977年   188篇
  1976年   187篇
  1974年   212篇
  1973年   170篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The interaction of human visinin-like protein 1 (VILIP1) and visinin-like protein 3 (VILIP3) with divalent cations (Mg2+, Ca2+, Sr2+ and Ba2+) was explored using circular dichroism and fluorescence measurement. These results showed that the four cations each induced a different subtle change in the conformation of VILIPs. Moreover, VILIP1 and VILIP3 bound with Ca2+ or Mg2+ in a cooperative manner. Studies on the truncated mutants showed that the intact EF-3 and EF-4 were essential for the binding of VILIP1 with Ca2+ and Mg2+. Pull-down assay revealed that Ca2+ and Mg2+ enhanced the intermolecular interaction of VILIPs, and led to the formation of homo- and hetero-oligomer of VILIPs. Together with previous findings that Ca2+-dependent localization of VILIPs may be involved in the regulation of distinct cascades and deprivation of Ca2+-binding capacity of VILIPs did not completely eliminate their activity, it is likely to reflect that Mg2+-bound VILIPs may play a role in regulating the biological function of VILIPs in response to a concentration fluctuation of Ca2+ in cells.  相似文献   
992.
Meng HY  Thomas KM  Lee AE  Zondlo NJ 《Biopolymers》2006,84(2):192-204
Cis-trans isomerization of amide bonds plays critical roles in protein molecular recognition, protein folding, protein misfolding, and disease. Aromatic-proline sequences are particularly prone to exhibit cis amide bonds. The roles of residues adjacent to a tyrosine-proline residue pair on cis-trans isomerism were examined. A short series of peptides XYPZ was synthesized and cis-trans isomerism was analyzed. Based on these initial studies, a series of peptides XYPN, X = all 20 canonical amino acids, was synthesized and analyzed by NMR for i residue effects on cis-trans isomerization. The following effects were observed: (a) aromatic residues immediately preceding Tyr-Pro disfavor cis amide bonds, with K(trans/cis)= 5.7-8.0, W > Y > F; (b) proline residues preceding Tyr-Pro lead to multiple species, exhibiting cis-trans isomerization of either or both X-Pro amide bonds; and (c) other residues exhibit similar values of K(trans/cis) (= 2.9-4.2), with Thr and protonated His exhibiting the highest fraction cis. beta-Branched and short polar residues were somewhat more favorable in stabilizing the cis conformation. Phosphorylation of serine at the i position modestly increases the stability of the cis conformer. In addition, the effect of the i+3 residue was examined in a limited series of peptides TYPZ. NMR data indicated that aromatic residues, Pro, Asn, Ala, and Val at the i+3 residue all favor cis amide bonds, with aromatic residues and Asn favoring more compact phi at Tyr(cis) and Ala and Pro favoring more extended phi at Tyr(cis). D-Alanine at the i+3 position particularly disfavors cis amide bonds.  相似文献   
993.
In case of nutritional stress, like carbon starvation, Escherichia coli cells abandon their exponential-growth state to enter a more resistant, non-growth state called stationary phase. This growth-phase transition is controlled by a genetic regulatory network integrating various environmental signals. Although E. coli is a paradigm of the bacterial world, it is little understood how its response to carbon starvation conditions emerges from the interactions between the different components of the regulatory network. Using a qualitative method that is able to overcome the current lack of quantitative data on kinetic parameters and molecular concentrations, we model the carbon starvation response network and simulate the response of E. coli cells to carbon deprivation. This allows us to identify essential features of the transition between exponential and stationary phase and to make new predictions on the qualitative system behavior following a carbon upshift.  相似文献   
994.
Although recent studies have shown that several pro-inflammatory proteins can be used as biomarkers for atherosclerosis, the mechanism of atherogenesis is unclear and little information is available regarding proteins involved in development of the disease. Atherosclerotic tissue samples were collected from patients in order to identify the proteins involved in atherogenesis. The protein expression profile of atherosclerosis patients was analysed using two-dimensional electrophoresis-based proteomics. Thirty-nine proteins were detected that were differentially expressed in the atherosclerotic aorta compared with the normal aorta. Twenty-seven of these proteins were identified in the MS-FIT database. They are involved in a number of biological processes, including calcium-mediated processes, migration of vascular smooth muscle cells, matrix metalloproteinase activation and regulation of pro-inflammatory cytokines. Confirmation of differential protein expression was performed by Western blot analysis. Potential applications of the results include the identification and characterization of signalling pathways involved in atherogenesis, and further exploration of the role of selected identified proteins in atherosclerosis.  相似文献   
995.
996.

Background

Pancreatic beta-cells proliferate following administration of the beta-cell toxin streptozotocin. Defining the conditions that promote beta-cell proliferation could benefit patients with diabetes. We have investigated the effect of insulin treatment on pancreatic beta-cell regeneration in streptozotocin-induced diabetic mice, and, in addition, report on a new approach to quantify beta-cell regeneration in vivo.

Methodology/Principal Findings

Streptozotocin-induced diabetic were treated with either syngeneic islets transplanted under the kidney capsule or subcutaneous insulin implants. After either 60 or 120 days of insulin treatment, the islet transplant or insulin implant were removed and blood glucose levels monitored for 30 days. The results showed that both islet transplants and insulin implants restored normoglycemia in the 60 and 120 day treated animals. However, only the 120-day islet and insulin implant groups maintained euglycemia (<200 mg/dl) following discontinuation of insulin treatment. The beta-cell was significantly increased in all the 120 day insulin-treated groups (insulin implant, 0.69±0.23 mg; and islet transplant, 0.91±0.23 mg) compared non-diabetic control mice (1.54±0.25 mg). We also show that we can use bioluminescent imaging to monitor beta-cell regeneration in living MIP-luc transgenic mice.

Conclusions/Significance

The results show that insulin treatment can promote beta-cell regeneration. Moreover, the extent of restoration of beta-cell function and mass depend on the length of treatment period and overall level of glycemic control with better control being associated with improved recovery. Finally, real-time bioluminescent imaging can be used to monitor beta-cell recovery in living MIP-luc transgenic mice.  相似文献   
997.
Pseudomonas putida E41 was isolated from oil-contaminated soil and showed its ability to grow on ethyl-benzene as the sole carbon and energy source. Moreover, P. putida E41 show the activity of biodegradation of ethylbenzene in the batch culture. E41 showed high efficiency of biodegradation of ethylbenzene with the optimum conditions (a cell concentration of 0.1 g wet cell weight/L, pH 7.0, 25°C, and ethylbenzene concentration of 50 mg/L) from the results of the batch culture. The maximum degradation rate and specific growth rate (μmax) under the optimum conditions were 0.19+0.03 mg/mg-DCW (Dry Cell Weight)/h and 0.87+0.13 h−1, respectively. Benzene, toluene and ethylbenzene were degraded when these compounds were provided together; however, xylene isomers persisted during degradation by P. putida E41. When using a bioreactor batch system with a binary culture with P. putida BJ10, which was isolated previously in our lab, the degradation rate for benzene and toluene was improved in BTE mixed medium (each initial concentration: 50 mg/L). Almost all of the BTE was degraded within 4 h and 70–80% of m-, p-, and o-xylenes within 11 h in a BTEX mixture (initial concentration: 50 mg/L each). In summary, we found a valuable new strain of P. putida, determined the optimal degradation conditions for this isolate and tested a mixed culture of E41 and BJ10 for its ability to degrade a common sample of mixed contaminants containing benzene, toluene, and xylene.  相似文献   
998.
Hizikia fusiforme is a commonly used food that possesses potent anti-bacterial, anti-fungal, and anti-inflammatory activities. The immunostimulatory activities of aqueous extract of Hizikia fusiforme (HFAE) in RAW 264.7 macrophages and whole spleen cells were investigated. HFAE activated RAW 264.7 macrophages to produce cytokines such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in a dose-dependent manner. In addition, HFAE induced the mRNA expression of TNF-α, IL-1β, and IL-6 in RAW 264.7 macrophages. Moreover, HFAE stimulated proliferation of whole spleen cells and reference mitogen. Taken together, the results demonstrate that HFAE potently activates the immune function by regulating NO, TNF-α, IL-1β, and IL-6 in RAW 264.7 macrophage and promoting spleen cell proliferation.  相似文献   
999.
Glycoside hydrolase family 4 (GH4) represents an unusual group of glucosidases with a requirement for NAD(+), Mn(2+), and reducing conditions. We found a putative α-glucosidase belonging to GH4 in hyperthermophilic Gram-negative bacterium Thermotoga neapolitana. In this study, we recombinantly expressed the putative α-glycosidase from T. neapolitana, and determined the crystal structure of the protein at a resolution of 2.0? in the presence of Mn(2+) but in the absence of NAD(+). The structure showed the dimeric assembly and the Mn(2+) coordination that other GH4 enzymes share. In comparison, we observed structural changes in T. neapolitana α-glucosidase by the binding of NAD(+), which also increased the thermostability. Numerous arginine-mediated salt-bridges were observed in the structure, and we confirmed that the salt bridges correlated with the thermostability of the proteins. Disruption of the salt bridge that linked N-terminal and C-terminal parts at the surface dramatically decreased the thermostability. A mutation that changed the internal salt bridge to a hydrogen bond also decreased the thermostability of the protein. This study will help us to understand the function of the putative glucosidase and the structural features that affect the thermostability of the protein.  相似文献   
1000.
Chikungunya virus (CHIKV) is an alphavirus responsible for numerous epidemics throughout Africa and Asia, causing infectious arthritis and reportedly linked with fatal infections in newborns and elderly. Previous studies in animal models indicate that humoral immunity can protect against CHIKV infection, but despite the potential efficacy of B-cell-driven intervention strategies, there are no virus-specific vaccines or therapies currently available. In addition, CHIKV has been reported to elicit long-lasting virus-specific IgM in humans, and to establish long-term persistence in non-human primates, suggesting that the virus might evade immune defenses to establish chronic infections in man. However, the mechanisms of immune evasion potentially employed by CHIKV remain uncharacterized. We previously described two human monoclonal antibodies that potently neutralize CHIKV infection. In the current report, we have characterized CHIKV mutants that escape antibody-dependent neutralization to identify the CHIKV E2 domain B and fusion loop "groove" as the primary determinants of CHIKV interaction with these antibodies. Furthermore, for the first time, we have also demonstrated direct CHIKV cell-to-cell transmission, as a mechanism that involves the E2 domain A and that is associated with viral resistance to antibody-dependent neutralization. Identification of CHIKV sub-domains that are associated with human protective immunity, will pave the way for the development of CHIKV-specific sub-domain vaccination strategies. Moreover, the clear demonstration of CHIKV cell-to-cell transmission and its possible role in the establishment of CHIKV persistence, will also inform the development of future anti-viral interventions. These data shed new light on CHIKV-host interactions that will help to combat human CHIKV infection and inform future studies of CHIKV pathogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号