首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9077篇
  免费   784篇
  国内免费   10篇
  9871篇
  2023年   36篇
  2022年   97篇
  2021年   170篇
  2020年   149篇
  2019年   179篇
  2018年   255篇
  2017年   228篇
  2016年   380篇
  2015年   528篇
  2014年   639篇
  2013年   615篇
  2012年   815篇
  2011年   672篇
  2010年   502篇
  2009年   417篇
  2008年   596篇
  2007年   492篇
  2006年   428篇
  2005年   391篇
  2004年   397篇
  2003年   329篇
  2002年   280篇
  2001年   102篇
  2000年   107篇
  1999年   97篇
  1998年   71篇
  1997年   62篇
  1996年   52篇
  1995年   39篇
  1994年   45篇
  1993年   33篇
  1992年   74篇
  1991年   56篇
  1990年   51篇
  1989年   42篇
  1988年   30篇
  1987年   33篇
  1986年   27篇
  1985年   37篇
  1984年   29篇
  1983年   19篇
  1982年   18篇
  1981年   18篇
  1980年   16篇
  1979年   19篇
  1978年   20篇
  1976年   17篇
  1975年   15篇
  1974年   16篇
  1973年   19篇
排序方式: 共有9871条查询结果,搜索用时 15 毫秒
171.
The cell cycle plays an important role in the development and adaptation of multicellular organisms; specifically, it allows them to optimally adjust their architecture in response to environmental changes. Kip-related proteins (KRPs) are important negative regulators of cyclin-dependent kinases (CDKs), which positively control the cell cycle during plant development. The Arabidopsis genome possesses seven KRP genes with low sequence similarity and distinct expression patterns; however, why Arabidopsis needs seven KRP genes and how these genes function in cell cycle regulation are unknown. Here, we focused on the characterization of KRP3, which was found to have unique functions in the shoot apical meristem (SAM) and leaves. KRP3 protein was localized to the SAM, including the ground meristem and vascular tissues in the ground part of the SAM and cotyledons. In addition, KRP3 protein was stabilized when treated with MG132, an inhibitor of the 26S proteasome, indicating that the protein may be regulated by 26S proteasome-mediated protein degradation. KRP3-overexpressing (KRP3 OE) transgenic plants showed reduced organ size, serrated leaves, and reduced fertility. Interestingly, the KRP3 OE transgenic plants showed a significant reduction in the size of the SAM with alterations in cell arrangement. In addition, compared to the wild type, the KRP3 OE transgenic plants had a higher DNA ploidy level in the SAM and leaves. Taken together, our data suggest that KRP3 plays important regulatory roles in the cell cycle and endoreduplication in the SAM and leaves.  相似文献   
172.
Neural epidermal growth factor-like protein-like 2 (NELL2) is a secreted glycoprotein that is predominantly expressed in the nervous system, but little is known about the intracellular movement and secretion mechanism of this protein. By monitoring the localization and movements of enhanced green fluorescent protein (EGFP)-labeled NELL2 in living cultured hippocampal neuroprogenitor HiB5 cells, we determined the subcellular localization of NELL2 and its intracellular movement and secretion mechanism. Cterminal EGFP-fused NELL2 showed a typical expression pattern of secreted proteins, especially with respect to its localization in the endoplasmic reticulum, Golgi apparatus, and punctate structures. Vesicles containing NELL2 exhibited bidirectional movement in HiB5 cells. The majority of the vesicles (70.1%) moved in an anterograde direction with an average velocity of 0.454 μm/s, whereas some vesicles (28.7%) showed retrograde movement with an average velocity of 0.302 μm/s. The movement patterns of NELL2 vesicles were dependent upon the presence of microtubules in HiB5 cells. Anterograde movement of NELL2 did not lead to a detectable accumulation of NELL2 in the peripheral region of the cell, indicating that it was secreted into the culture medium. We also showed that the N-terminal 29 amino acids of NELL2 were important for secretion of this protein. Taken together, these results strongly suggest that the N-terminal region of NELL2 determines both the pattern of its intracellular expression and transport of NELL2 vesicles by high-velocity movement. Therefore, NELL2 may affect the cellular activity of cells in a paracrine or autocrine manner.  相似文献   
173.
The angiopoietin/Tie2 system is an important regulator of angiogenesis and inflammation. In addition to its functions in endothelial cells, Tie2 expression on non-endothelial cells allows for angiopoietin ligands to stimulate the cells. Although Ang1 is a strong Tie2 receptor agonist, little is known regarding the effect of Ang1 on non-endothelial cells, such as monocytes and macrophages. In this study, we found that Ang1 functionally binds to and stimulates monocytes via p38 and Erk1/2 phosphorylation. Ang1-mediated monocyte stimulation is associated with proinflammatory cytokine TNF-α expression. We also determined that Ang1 switched macrophage differentiation toward a pro-inflammatory phenotype, even in the presence of an anti-inflammatory mediator. These findings suggest that Ang1 plays a role in stimulating pro-inflammatory responses and could provide a new strategy by which to manage inflammatory responses.  相似文献   
174.
175.
Fertilization in flowering plants requires the temporal and spatial coordination of many developmental processes, including pollen production, anther dehiscence, ovule production, and pollen tube elongation. However, it remains elusive as to how this coordination occurs during reproduction. Here, we present evidence that endocytosis, involving heterotetrameric adaptor protein complex 2 (AP-2), plays a crucial role in fertilization. An Arabidopsis thaliana mutant ap2m displays multiple defects in pollen production and viability, as well as elongation of staminal filaments and pollen tubes, all of which are pivotal processes needed for fertilization. Of these abnormalities, the defects in elongation of staminal filaments and pollen tubes were partially rescued by exogenous auxin. Moreover, DR5rev:GFP (for green fluorescent protein) expression was greatly reduced in filaments and anthers in ap2m mutant plants. At the cellular level, ap2m mutants displayed defects in both endocytosis of N-(3-triethylammonium-propyl)-4-(4-diethylaminophenylhexatrienyl) pyridinium dibromide, a lypophilic dye used as an endocytosis marker, and polar localization of auxin-efflux carrier PIN FORMED2 (PIN2) in the stamen filaments. Moreover, these defects were phenocopied by treatment with Tyrphostin A23, an inhibitor of endocytosis. Based on these results, we propose that AP-2–dependent endocytosis plays a crucial role in coordinating the multiple developmental aspects of male reproductive organs by modulating cellular auxin level through the regulation of the amount and polarity of PINs.  相似文献   
176.
177.
Staurosporine induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Recently, it was demonstrated that the control of cellular redox balance and the defense against oxidative damage is one of the primary functions of cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) by supplying NADPH for antioxidant systems. The present report shows that silencing of IDPc expression in HeLa cells greatly enhances apoptosis induced by staurosporine. Transfection of HeLa cells with an IDPc small interfering RNA (siRNA) markedly decreased activity of IDPc, enhancing the susceptibility of staurosporine-induced apoptosis reflected by DNA fragmentation, cellular redox status and the modulation of apoptotic marker proteins. These results indicate that IDPc may play an important role in regulating the apoptosis induced by staurosporine and the sensitizing effect of IDPc siRNA on the apoptotic cell death of HeLa cells offers the possibility of developing a modifier of cancer chemotherapy.  相似文献   
178.
Although a relationship between PDZK1 expression and estrogen receptor (ER)-α stimulation has been suggested, the nature of such a connection and the function of PDZK1 in breast cancer remain unknown. Human tissue microarrays (cancer tissue: 262 cores; normal tissue: 87 cores) and breast cancer cell lines were used to conduct the study. We show that PDZK1 protein expression is tightly correlated with human breast malignancy, is negatively correlated with age and had no significant correlation with ER-α expression levels. PDZK1 exhibited an exclusive epithelial expression with mostly cytosolic subcellular localization. Additionally, 17β-estradiol induced PDZK1 expression above its basal level more than 24 h after treatment in MCF-7 cells. PDZK1 expression was indirectly regulated by ER-α stimulation, requiring insulinlike growth factor 1 receptor (IGF-1R) expression and function. The molecular link between PDZK1 and IGF-1R was supported by a significant correlation between protein and mRNA levels (r = 0.591, p < 0.001, and r = 0.537, p < 0.001, respectively) of the two factors in two different cohorts of human breast cancer tissues. Interestingly, PDZK1 knockdown in MCF-7 cells blocked ER-dependent growth and reduced c-Myc expression, whereas ectopic expression of PDZK1 enhanced cell proliferation in the presence or absence of 17β-estradiol potentially through an increase in c-Myc expression, suggesting that PDZK1 has oncogenic activity. PDKZ1 also appeared to interact with the Src/ER-α/epidermal growth factor receptor (EGFR) complex, but not with IGF-1R and enhanced EGFR-stimulated MEK/ERK1/2 signaling. Collectively, our results clarify the relationship between ER-α and PDZK1, propose a direct relationship between PDZK1 and IGF-1R, and identify a novel oncogenic activity for PDZK1 in breast cancer.  相似文献   
179.
Aldose reductase (AR) is abundantly expressed in a variety of cell lineages and has been implicated in the cellular response against oxidative stress. However, the exact functional role of AR against oxidative stress remains relatively unclear. This study investigated the role of AR in acrolein- or hydrogen peroxide-induced apoptosis using the J774.A.1 macrophage cell line. Ablation of AR with a small interference RNA or inhibition of AR activity significantly enhanced the acrolein- or hydrogen peroxide-induced generation of reactive oxygen species and aldehydes, leading to increased apoptotic cell death. Blockade of AR activity in J774A.1 cells markedly augmented the acrolein- or hydrogen peroxide-induced translocation of Bax to mitochondria along with reduced Bcl-2 and increased release of cytochrome c from the mitochodria. Taken together, these findings indicate that AR plays an important role in the cellular response against oxidative stress, by sequestering the reactive molecules generated in cells exposed to toxic substances.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号