首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74454篇
  免费   18200篇
  国内免费   26篇
  2023年   164篇
  2022年   523篇
  2021年   1329篇
  2020年   2617篇
  2019年   4250篇
  2018年   4650篇
  2017年   4853篇
  2016年   5408篇
  2015年   6186篇
  2014年   6271篇
  2013年   6993篇
  2012年   5823篇
  2011年   5328篇
  2010年   5388篇
  2009年   3968篇
  2008年   3806篇
  2007年   3278篇
  2006年   2915篇
  2005年   2778篇
  2004年   2555篇
  2003年   2234篇
  2002年   1958篇
  2001年   1613篇
  2000年   1487篇
  1999年   1184篇
  1998年   437篇
  1997年   385篇
  1996年   288篇
  1995年   251篇
  1994年   253篇
  1993年   210篇
  1992年   405篇
  1991年   355篇
  1990年   314篇
  1989年   269篇
  1988年   203篇
  1987年   195篇
  1986年   158篇
  1985年   141篇
  1984年   103篇
  1983年   102篇
  1982年   82篇
  1981年   69篇
  1980年   72篇
  1979年   88篇
  1978年   73篇
  1977年   62篇
  1976年   61篇
  1974年   78篇
  1973年   60篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
Alzheimer’s disease (AD) is a devastating neurodegenerative condition with no known cure. While current therapies target late-stage amyloid formation and cholinergic tone, to date, these strategies have proven ineffective at preventing disease progression. The reasons for this may be varied, and could reflect late intervention, or, that earlier pathogenic mechanisms have been overlooked and permitted to accelerate the disease process. One such example would include synaptic pathology, the disease component strongly associated with cognitive impairment. Dysregulated Ca2+ homeostasis may be one of the critical factors driving synaptic dysfunction. One of the earliest pathophysiological indicators in mutant presenilin (PS) AD mice is increased intracellular Ca2+ signaling, predominantly through the ER-localized inositol triphosphate (IP3) and ryanodine receptors (RyR). In particular, the RyR-mediated Ca2+ upregulation within synaptic compartments is associated with altered synaptic homeostasis and network depression at early (presymptomatic) AD stages. Here, we offer an alternative approach to AD therapeutics by stabilizing early pathogenic mechanisms associated with synaptic abnormalities. We targeted the RyR as a means to prevent disease progression, and sub-chronically treated AD mouse models (4-weeks) with a novel formulation of the RyR inhibitor, dantrolene. Using 2-photon Ca2+ imaging and patch clamp recordings, we demonstrate that dantrolene treatment fully normalizes ER Ca2+ signaling within somatic and dendritic compartments in early and later-stage AD mice in hippocampal slices. Additionally, the elevated RyR2 levels in AD mice are restored to control levels with dantrolene treatment, as are synaptic transmission and synaptic plasticity. Aβ deposition within the cortex and hippocampus is also reduced in dantrolene-treated AD mice. In this study, we highlight the pivotal role of Ca2+ aberrations in AD, and propose a novel strategy to preserve synaptic function, and thereby cognitive function, in early AD patients.  相似文献   
42.
43.
44.
45.
Signaling through the T cell antigen receptor (TCR) is important for the homeostasis of naïve and memory CD4+ T cells. The significance of TCR signaling in regulatory T (Treg) cells has not been systematically addressed. Using an Ox40-cre allele that is prominently expressed in Treg cells, and a conditional null allele of the gene encoding p56Lck, we have examined the importance of TCR signaling in Treg cells. Inactivation of p56Lck resulted in abnormal Treg homeostasis characterized by impaired turnover, preferential redistribution to the lymph nodes, loss of suppressive function, and striking changes in gene expression. Abnormal Treg cell homeostasis and function did not reflect the involvement of p56Lck in CD4 function because these effects were not observed when CD4 expression was inactivated by Ox40-cre.The results make clear multiple aspects of Treg cell homeostasis and phenotype that are dependent on a sustained capacity to signal through the TCR.  相似文献   
46.
Abstract. Objectives: The ADAMs (a disintegrin and metalloproteinase) enzymes compose a family of membrane‐bound proteins characterized by their multi‐domain structure and ADAM‐12 expression is elevated in human non‐small cell lung cancers. The aim of this study was to investigate the roles played by ADAM‐12 in critical steps of bronchial cell transformation during carcinogenesis. Materials and methods: To assess the role of ADAM‐12 in tumorigenicity, BEAS‐2B cells were transfected with a plasmid encoding human full‐length ADAM‐12 cDNA, and then the effects of ADAM‐12 overexpression on cell behaviour were explored. Treatment of clones with heparin‐binding epidermal growth factor (EGF)‐like growth factor (HB‐EGF) neutralizing antibodies as well as an EGFR inhibitor allowed the dissection of mechanisms regulating cell proliferation and apoptosis. Results: Overexpression of ADAM‐12 in BEAS‐2B cells promoted cell proliferation. ADAM‐12 overexpressing clones produced higher quantities of HB‐EGF in their culture medium which may rely on membrane‐bound HB‐EGF shedding by ADAM‐12. Targeting HB‐EGF activity with a neutralizing antibody abrogated enhanced cell proliferation in the ADAM‐12 overexpressing clones. In sharp contrast, targeting of amphiregulin, EGF or transforming growth factor‐α failed to influence cell proliferation; moreover, ADAM‐12 transfectants were resistant to etoposide‐induced apoptosis and the use of a neutralizing antibody against HB‐EGF activity restored rates of apoptosis to be similar to controls.Conclusions: ADAM‐12 contributes to enhancing HB‐EGF shedding from plasma membranes leading to increased cell proliferation and reduced apoptosis in this bronchial epithelial cell line.  相似文献   
47.
48.
Beyond its role as an electron acceptor in aerobic respiration, oxygen is also a key effector of many developmental events. The oxygen‐sensing machinery and the very fabric of cell identity and function have been shown to be deeply intertwined. Here we take a first look at how oxygen might lie at the crossroads of at least two of the major molecular pathways that shape pancreatic development. Based on recent evidence and a thorough review of the literature, we present a theoretical model whereby evolving oxygen tensions might choreograph to a large extent the sequence of molecular events resulting in the development of the organ. In particular, we propose that lower oxygenation prior to the expansion of the vasculature may favour HIF (hypoxia inducible factor)‐mediated activation of Notch and repression of Wnt/β‐catenin signalling, limiting endocrine cell differentiation. With the development of vasculature and improved oxygen delivery to the developing organ, HIF‐mediated support for Notch signalling may decline while the β‐catenin‐directed Wnt signalling is favoured, which would support endocrine cell differentiation and perhaps exocrine cell proliferation/differentiation.  相似文献   
49.
Human erythrocyte and brain acetylcholinesterase are preferentially inhibited by the P(-)-isomers of C(+/-)P(+/-)-soman. The enzymes inhibited by the P(-)-isomers behave similarly with respect to oxime-induced reactivation and aging. HI-6 is the best reactivator for C(+)P(-)-soman-inhibited acetylcholinesterases. Oxime-induced reactivation of the C(-)P(-)-soman-inhibited acetylcholinesterases is much more difficult to achieve.  相似文献   
50.

Backgound  

It has been reported that Toll-like receptor 4 (TLR4) deficiency reduces infarct size after myocardial ischemia/reperfusion (MI/R). However, measurement of MI/R injury was limited and did not include cardiac function. In a chronic closed-chest model we assessed whether cardiac function is preserved in TLR4-deficient mice (C3H/HeJ) following MI/R, and whether myocardial and systemic cytokine expression differed compared to wild type (WT).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号