首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16096篇
  免费   1955篇
  国内免费   4篇
  2021年   215篇
  2018年   170篇
  2017年   170篇
  2016年   268篇
  2015年   408篇
  2014年   496篇
  2013年   623篇
  2012年   737篇
  2011年   764篇
  2010年   486篇
  2009年   429篇
  2008年   611篇
  2007年   661篇
  2006年   600篇
  2005年   570篇
  2004年   546篇
  2003年   516篇
  2002年   488篇
  2001年   477篇
  2000年   504篇
  1999年   432篇
  1998年   249篇
  1997年   206篇
  1996年   192篇
  1995年   177篇
  1994年   164篇
  1993年   180篇
  1992年   372篇
  1991年   288篇
  1990年   325篇
  1989年   286篇
  1988年   304篇
  1987年   319篇
  1986年   251篇
  1985年   280篇
  1984年   223篇
  1983年   234篇
  1982年   204篇
  1981年   181篇
  1980年   168篇
  1979年   239篇
  1978年   209篇
  1977年   182篇
  1976年   182篇
  1975年   169篇
  1974年   170篇
  1973年   182篇
  1972年   162篇
  1971年   134篇
  1969年   125篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
861.
Helicobacter pylori infection in children and adolescents differs in comparison to adults with respect to epidemiology, host responses, and disease manifestations. Furthermore, treatment options are limited in this population and antibiotic resistance rates continue to increase. Therefore, ongoing research is vital to understand disease pathogenesis and provide optimal management of children with infection. This review summarizes relevant publications from April 2019 to March 2020. Similar to adults, recent studies show a decreasing prevalence of infection in the pediatric population. Studies of pathogenesis investigated serum immune responses and the potential inverse association of infection and allergy. Several studies investigated the effect of H pylori and related inflammation on the gut microbiome. The recommendation of endoscopy‐based testing to identify the cause of symptoms and not just H pylori, reserving noninvasive UBT or stool antigen tests for post‐eradication follow‐up, was supported by the current literature.  相似文献   
862.
863.
Species distribution models are required for the research and management of biodiversity in the hyperdiverse tropical forests, but reliable and ecologically relevant digital environmental data layers are not always available. We here assess the usefulness of multispectral canopy reflectance (Landsat) relative to climate data in modelling understory plant species distributions in tropical rainforests. We used a large dataset of quantitative fern and lycophyte species inventories across lowland Amazonia as the basis for species distribution modelling (SDM). As predictors, we used CHELSA climatic variables and canopy reflectance values from a recent basin-wide composite of Landsat TM/ETM+ images both separately and in combination. We also investigated how species accumulate over sites when environmental distances were expressed in terms of climatic or surface reflectance variables. When species accumulation curves were constructed such that differences in Landsat reflectance among the selected plots were maximised, species accumulated faster than when climatic differences were maximised or plots were selected in a random order. Sixty-nine species were sufficiently frequent for species distribution modelling. For most of them, adequate SDMs were obtained whether the models were based on CHELSA data only, Landsat data only or both combined. Model performance was not influenced by species’ prevalence or abundance. Adding Landsat-based environmental data layers overall improved the discriminatory capacity of SDMs compared to climate-only models, especially for soil specialist species. Our results show that canopy surface reflectance obtained by multispectral sensors can provide studies of tropical ecology, as exemplified by SDMs, much higher thematic (taxonomic) detail than is generally assumed. Furthermore, multispectral datasets complement the traditionally used climatic layers in analyses requiring information on environmental site conditions. We demonstrate the utility of freely available, global remote sensing data for biogeographical studies that can aid conservation planning and biodiversity management.  相似文献   
864.
Warming, eutrophication (nutrient fertilization) and brownification (increased loading of allochthonous organic matter) are three global trends impacting lake ecosystems. However, the independent and synergistic effects of resource addition and warming on autotrophic and heterotrophic microorganisms are largely unknown. In this study, we investigate the independent and interactive effects of temperature, dissolved organic carbon (DOC, both allochthonous and autochthonous) and nitrogen (N) supply, in addition to the effect of spatial variables, on the composition, richness, and evenness of prokaryotic and eukaryotic microbial communities in lakes across elevation and N deposition gradients in the Sierra Nevada mountains of California, USA. We found that both prokaryotic and eukaryotic communities are structured by temperature, terrestrial (allochthonous) DOC and latitude. Prokaryotic communities are also influenced by total and aquatic (autochthonous) DOC, while eukaryotic communities are also structured by nitrate. Additionally, increasing N availability was associated with reduced richness of prokaryotic communities, and both lower richness and evenness of eukaryotes. We did not detect any synergistic or antagonistic effects as there were no interactions among temperature and resource variables. Together, our results suggest that (a) organic and inorganic resources, temperature, and geographic location (based on latitude and longitude) independently influence lake microbial communities; and (b) increasing N supply due to atmospheric N deposition may reduce richness of both prokaryotic and eukaryotic microbes, probably by reducing niche dimensionality. Our study provides insight into abiotic processes structuring microbial communities across environmental gradients and their potential roles in material and energy fluxes within and between ecosystems.  相似文献   
865.
Age‐related changes in diet have implications for competitive interactions and for predator–prey dynamics, affecting individuals and groups at different life stages. To quantify patterns of variation and ontogenetic change in the diets of Tasmanian devils Sarcophilus harrisii, a threatened marsupial carnivore, we analyzed variation in the stable isotope composition of whisker tissue samples taken from 91 individual devils from Wilmot, Tasmania from December 2014 to February 2017. Both δ13C and δ15N decreased with increasing age in weaned Tasmanian devils, indicating that as they age devils rely less on small mammals and birds, and more on large herbivores. Devils <12 months old had broader group isotopic niches, as estimated by Bayesian standard ellipses (SEAB mode = 1.042) than devils from 12 to 23 months old (mode = 0.541) and devils ≥24 months old (mode = 0.532). Devils <24 months old had broader individual isotopic niches (SEAB mode range 0.492–1.083) than devils ≥24 months old (mode range 0.092–0.240). A decrease in δ15N from the older whisker sections to the more recently grown sections in devils <24 months old likely reflects the period of weaning in this species, as this pattern was not observed in devils ≥24 months old. Our data reveal changes in the isotopic composition of devil whiskers with increasing age, accompanied by a reduction in isotopic variation both among population age classes and within individuals, reflecting the effect of weaning in early life, and a likely shift from an initially diverse diet of small mammals, birds, and invertebrates towards increasing consumption of larger herbivores in adulthood.  相似文献   
866.
High‐throughput high‐density genotyping arrays continue to be a fast, accurate, and cost‐effective method for genotyping thousands of polymorphisms in high numbers of individuals. Here, we have developed a new high‐density SNP genotyping array (103,270 SNPs) for honey bees, one of the most ecologically and economically important pollinators worldwide. SNPs were detected by conducting whole‐genome resequencing of 61 honey bee drones (haploid males) from throughout Europe. Selection of SNPs for the chip was done in multiple steps using several criteria. The majority of SNPs were selected based on their location within known candidate regions or genes underlying a range of honey bee traits, including hygienic behavior against pathogens, foraging, and subspecies. Additionally, markers from a GWAS of hygienic behavior against the major honey bee parasite Varroa destructor were brought over. The chip also includes SNPs associated with each of three major breeding objectives—honey yield, gentleness, and Varroa resistance. We validated the chip and make recommendations for its use by determining error rates in repeat genotypings, examining the genotyping performance of different tissues, and by testing how well different sample types represent the queen's genotype. The latter is a key test because it is highly beneficial to be able to determine the queen's genotype by nonlethal means. The array is now publicly available and we suggest it will be a useful tool in genomic selection and honey bee breeding, as well as for GWAS of different traits, and for population genomic, adaptation, and conservation questions.  相似文献   
867.
Serial sectioning of a nodule encapsulating an adult specimen of the arthrodire placoderm Watsonosteus fletti from the Eday Flagstone Formation (Givetian) in the Orcadian Basin of northern Scotland has revealed the presence of a number of embryos within the adult. This specimen represents the oldest known record of fossilized vertebrate embryos. Thin sections of two of the slices have revealed the detailed histological structure of embryonic plates in placoderms, showing that as previously deduced from visual examination, the outer and inner layers were the first to form. Gut contents preserved near the embryos show that the species had a varied diet, with dermal bone fragments from sarcopterygians and placoderms.  相似文献   
868.
869.
870.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号