首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15438篇
  免费   1454篇
  国内免费   4篇
  16896篇
  2023年   91篇
  2022年   227篇
  2021年   434篇
  2020年   266篇
  2019年   297篇
  2018年   346篇
  2017年   303篇
  2016年   488篇
  2015年   847篇
  2014年   908篇
  2013年   997篇
  2012年   1335篇
  2011年   1410篇
  2010年   880篇
  2009年   738篇
  2008年   957篇
  2007年   944篇
  2006年   891篇
  2005年   719篇
  2004年   785篇
  2003年   683篇
  2002年   674篇
  2001年   136篇
  2000年   80篇
  1999年   113篇
  1998年   150篇
  1997年   89篇
  1996年   75篇
  1995年   78篇
  1994年   78篇
  1993年   96篇
  1992年   59篇
  1991年   54篇
  1990年   47篇
  1989年   34篇
  1988年   37篇
  1987年   38篇
  1986年   28篇
  1985年   35篇
  1984年   43篇
  1983年   27篇
  1982年   44篇
  1981年   36篇
  1980年   34篇
  1979年   23篇
  1978年   34篇
  1977年   17篇
  1976年   21篇
  1975年   15篇
  1974年   15篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
102.
103.
Previously, metalloproteinase was isolated and identified from Trichomonas vaginalis, belonging to the aminopeptidase P-like metalloproteinase subfamily A/B, family M24 of clan MG, named TvMP50. The native and recombinant TvMP50 showed proteolytic activity, determined by gelatin zymogram, and a 50 kDa band, suggesting that TvMP50 is a monomeric active enzyme. This was an unexpected finding since other Xaa-Pro aminopeptidases/prolidases are active as a biological unit formed by dimers/tetramers. In this study, the evolutionary history of TvMP50 and the preliminary crystal structure of the recombinant enzyme determined at 3.4 Å resolution is reported. TvMP50 was shown to be a type of putative, eukaryotic, monomeric aminopeptidase P, and the crystallographic coordinates showed a monomer on a “pseudo-homodimer” array on the asymmetric unit that resembles the quaternary structure of the M24B dimeric family and suggests a homodimeric aminopeptidase P-like enzyme as a likely ancestor. Interestingly, TvMP50 had a modified N-terminal region compared with other Xaa-Pro aminopeptidases/prolidases with three-dimensional structures; however, the formation of the standard dimer is structurally unstable in aqueous solution, and a comparably reduced number of hydrogen bridges and lack of saline bridges were found between subunits A/B, which could explain why TvMP50 portrays monomeric functionality. Additionally, we found that the Parabasalia group contains two protein lineages with a “pita bread” fold; the ancestral monomeric group 1 was probably derived from an ancestral dimeric aminopeptidase P-type enzyme, and group 2 has a probable dimeric kind of ancestral eukaryotic prolidase lineage. The implications of such hypotheses are also presented.  相似文献   
104.
Osteoporosis is characterized by reduced bone density and strength. Bone mass peaks between age 30 and 40 and then declines. This can be accelerated by factors including menopause and insufficient dietary calcium. Hormone replacement therapy (HRT) is currently the standard treatment for osteoporosis. However, growing concern over potential side effects of HRT has driven a search for alternative therapies. A recent report 1 reveals a potential alternative to HRT: a gender-neutral synthetic steroid that increases bone mass and strength without affecting reproductive organs. This compound acts via a novel extranuclear sex steroid receptor signaling mechanism that has important implications for nuclear receptor biology and human health.  相似文献   
105.
Plants differ greatly in their susceptibility to insect herbivory, suggesting both local adaptation and resistance tradeoffs. We used maize (Zea mays) recombinant inbred lines to map a quantitative trait locus (QTL) for the maize leaf aphid (Rhopalosiphum maidis) susceptibility to maize Chromosome 1. Phytochemical analysis revealed that the same locus was also associated with high levels of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA-Glc) and low levels of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIMBOA-Glc). In vitro enzyme assays with candidate genes from the region of the QTL identified three O-methyltransferases (Bx10a-c) that convert DIMBOA-Glc to HDMBOA-Glc. Variation in HDMBOA-Glc production was attributed to a natural CACTA family transposon insertion that inactivates Bx10c in maize lines with low HDMBOA-Glc accumulation. When tested with a population of 26 diverse maize inbred lines, R. maidis produced more progeny on those with high HDMBOA-Glc and low DIMBOA-Glc. Although HDMBOA-Glc was more toxic to R. maidis than DIMBOA-Glc in vitro, BX10c activity and the resulting decline of DIMBOA-Glc upon methylation to HDMBOA-Glc were associated with reduced callose deposition as an aphid defense response in vivo. Thus, a natural transposon insertion appears to mediate an ecologically relevant trade-off between the direct toxicity and defense-inducing properties of maize benzoxazinoids.  相似文献   
106.
The role of DNA damage repair in aging of adult stem cells   总被引:3,自引:0,他引:3  
DNA repair maintains genomic stability and the loss of DNA repair capacity results in genetic instability that may lead to a decline of cellular function. Adult stem cells are extremely important in the long-term maintenance of tissues throughout life. They regenerate and renew tissues in response to damage and replace senescent terminally differentiated cells that no longer function. Oxidative stress, toxic byproducts, reduced mitochondrial function and external exposures all damage DNA through base modification or mis-incorporation and result in DNA damage. As in most cells, this damage may limit the survival of the stem cell population affecting tissue regeneration and even longevity. This review examines the hypothesis that an age-related loss of DNA damage repair pathways poses a significant threat to stem cell survival and longevity. Normal stem cells appear to have strict control of gene expression and DNA replication whereas stem cells with loss of DNA repair may have altered patterns of proliferation, quiescence and differentiation. Furthermore, stem cells with loss of DNA repair may be susceptible to malignant transformation either directly or through the emergence of cancer-prone stem cells. Human diseases and animal models of loss of DNA repair provide longitudinal analysis of DNA repair processes in stem cell populations and may provide links to the physiology of aging.  相似文献   
107.
Flavo-diiron proteins (FDPs) contain non-heme diiron and proximal flavin mononucleotide (FMN) active sites and function as terminal components of a nitric oxide reductase (NOR) and/or a four-electron dioxygen reductase (O2R). While most FDPs show similar structural, spectroscopic, and redox properties, O2R and NOR activities vary significantly among FDPs. A potential source of this variability is the iron ligation status of a conserved His residue that provides an iron ligand in all known FDP structures but one, where this His residue is rotated away from iron and replaced by a solvent ligand. In order to test the effect of this His ligation status, we changed this ligating His residue (H90) in Thermotoga maritima (Tm) FDP to either Asn or Ala. The wild-type Tm FDP shows significantly higher O2R than NOR activity. Single crystal X-ray crystallography revealed a remarkably conserved diiron site structure in the H90N and ?A variants, differing mainly by either Asn or solvent coordination, respectively, in place of H90. The steady-state activities were minimally affected by the H90 substitutions, remaining significantly higher for O2R versus NOR. The pre-steady-state kinetics of the fully reduced FDP with O2 were also minimally affected by the H90 substitutions. The results indicate that the coordination status of this His ligand does not significantly modulate the O2R or NOR activities, and that FDPs can retain these activities when the individual iron centers are differentiated by His ligand substitution. This differentiation may have implications for the O2R and NOR mechanisms of FDPs.  相似文献   
108.
Human exposure to alkylating agents metabolized from tobacco- and food-borne carcinogens occurs regularly. Dietary inorganic compounds such as selenium and vanadium have been shown previously to provide chemoprotective benefits in rat and human trials. Here, we present biochemical data on the ability of inorganic compounds to protect DNA from alkylation damage. An enzyme cleavage assay is used to observe alkylated DNA. Simple salts (e.g., NaCl or NiCl2) did not prevent DNA alkylation, whereas anionic oxo species (e.g., Na2SeO4 or Na3VO4) did inhibit alkylation. We propose that these oxo species behave as nucleophilic targets for the electrophilic alkylating agents, thereby preventing DNA damage.  相似文献   
109.
110.
The three-dimensional structure of the native "putative prismane" protein from Desulfovibrio vulgaris (Hildenborough) has been solved by X-ray crystallography to a resolution of 1.72?Å. The molecule does not contain a [6Fe-6S] prismane cluster, but rather two 4Fe clusters some 12?Å apart and situated close to the interfaces formed by the three domains of the protein. Cluster 1 is a conventional [4Fe-4S] cubane bound, however, near the N-terminus by an unusual, sequential arrangement of four cysteine residues (Cys 3, 6, 15, 21). Cluster 2 is a novel 4Fe structure with two μ2-sulfido bridges, two μ2-oxo bridges, and a partially occupied, unidentified μ2 bridge X. The protein ligands of cluster 2 are widely scattered through the second half of the sequence and include three cysteine residues (Cys 312, 434, 459), one persulfido-cysteine (Cys 406), two glutamates (Glu 268, 494), and one histidine (His 244). With this unusual mixture of bridging and external type of ligands, cluster 2 is named the "hybrid" cluster, and its asymmetric, open structure suggests that it could be the site of a catalytic activity. X-ray absorption spectroscopy at the Fe K-edge is readily interpretable in terms of the crystallographic model when allowance is made for volume contraction at 10?K; no Fe··Fe distances beyond 3.1?Å could be identified. EPR, Mössbauer and MCD spectroscopy have been used to define the oxidation states and the magnetism of the clusters in relation to the crystallographic structure. Reduced cluster 1 is a [4Fe-4S]1+ cubane with S?=?3/2; it is the first biological example of a "spin-admixed" iron-sulfur cluster. The hybrid cluster 2 has four oxidation states from (formally) all FeIII to three FeII plus one FeIII. The four iron ions are exchange coupled resulting in the system spins S?=?0, 9/2, 0 (and 4), 1/2, respectively, for the four redox states. Resonance Raman spectroscopy suggests that the bridging ligand X which could not be identified unambiguously in the crystal structure is a solvent-exchangeable oxygen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号