首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16384篇
  免费   1543篇
  国内免费   4篇
  17931篇
  2023年   90篇
  2022年   235篇
  2021年   444篇
  2020年   273篇
  2019年   305篇
  2018年   363篇
  2017年   321篇
  2016年   511篇
  2015年   881篇
  2014年   938篇
  2013年   1036篇
  2012年   1394篇
  2011年   1474篇
  2010年   927篇
  2009年   781篇
  2008年   1008篇
  2007年   996篇
  2006年   941篇
  2005年   773篇
  2004年   837篇
  2003年   736篇
  2002年   721篇
  2001年   155篇
  2000年   96篇
  1999年   135篇
  1998年   163篇
  1997年   99篇
  1996年   83篇
  1995年   84篇
  1994年   84篇
  1993年   102篇
  1992年   69篇
  1991年   68篇
  1990年   52篇
  1989年   44篇
  1988年   48篇
  1987年   48篇
  1986年   32篇
  1985年   42篇
  1984年   50篇
  1983年   39篇
  1982年   50篇
  1981年   41篇
  1980年   40篇
  1979年   27篇
  1978年   40篇
  1977年   19篇
  1976年   23篇
  1975年   21篇
  1974年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
993.
Membrane protein variants with diminished conformational stability often exhibit enhanced cellular expression at reduced growth temperatures. The expression of “temperature-sensitive” variants is also typically sensitive to corrector molecules that bind and stabilize the native conformation. There are many examples of temperature-sensitive rhodopsin variants, the misfolding of which is associated with the molecular basis of retinitis pigmentosa. In this work, we employ deep mutational scanning to compare the effects of reduced growth temperature and 9-cis-retinal, an investigational corrector, on the plasma membrane expression of 700 rhodopsin variants in HEK293T cells. We find that the change in expression at reduced growth temperatures correlates with the response to 9-cis-retinal among variants bearing mutations within a hydrophobic transmembrane domain (TM2). The most sensitive variants appear to disrupt a native helical kink within this transmembrane domain. By comparison, mutants that alter the structure of a polar transmembrane domain (TM7) exhibit weaker responses to temperature and retinal that are poorly correlated. Statistical analyses suggest that this observed insensitivity cannot be attributed to a single variable, but likely arises from the composite effects of mutations on the energetics of membrane integration, the stability of the native conformation, and the integrity of the retinal-binding pocket. Finally, we show that the characteristics of purified temperature- and retinal-sensitive variants suggest that the proteostatic effects of retinal may be manifested during translation and cotranslational folding. Together, our findings highlight several biophysical constraints that appear to influence the sensitivity of genetic variants to temperature and small-molecule correctors.  相似文献   
994.
Transmembrane signaling adaptor DAP12 has increasingly been recognized for its important role in innate responses. However, its role in the regulation of antimicrobial T cell responses has remained unknown. In our current study, we have examined host defense, T cell responses, and tissue immunopathology in models of intracellular infection established in wild-type and DAP12-deficient mice. During mycobacterial infection, lack of DAP12 leads to pronounced proinflammatory and Th1 cytokine responses, overactivation of Ag-specific CD4 and CD8 T cells of type 1 phenotype, and heightened immunopathology both in the lung and lymphoid organs. DAP12-deficient airway APC display enhanced NF-kappaB activation and cytokine responses upon TLR stimulation or mycobacterial infection in vitro. Of importance, adoptive transfer of Ag-loaded DAP12-deficient APC alone could lead to overactivation of transferred transgenic or endogenous wild-type T cells in vivo. We have further found that the immune regulatory role by DAP12 is not restricted only to intracellular bacterial infection, since lack of this molecule also leads to uncontrolled type 1 T cell activation and severe immunopathology and tissue injury during intracellular viral infection. Our study thus identifies DAP12 as an important novel immune regulatory molecule that acts, via APC, to control the level of antimicrobial type 1 T cell activation and immunopathology.  相似文献   
995.
996.

Background  

Trypanosomes are coated with a variant surface glycoprotein (VSG) that is so densely packed that it physically protects underlying proteins from effectors of the host immune system. Periodically cells expressing a distinct VSG arise in a population and thereby evade immunity. The main structural feature of VSGs are two long α-helices that form a coiled coil, and sets of relatively unstructured loops that are distal to the plasma membrane and contain most or all of the protective epitopes. The primary structure of different VSGs is highly variable, typically displaying only ~20% identity with each other. The genome has nearly 2000 VSG genes, which are located in subtelomeres. Only one VSG gene is expressed at a time, and switching between VSGs primarily involves gene conversion events. The archive of silent VSGs undergoes diversifying evolution rapidly, also involving gene conversion. The VSG family is a paradigm for α helical coiled coil structures, epitope variation and GPI-anchor signals. At the DNA level, the genes are a paradigm for diversifying evolutionary processes and for the role of subtelomeres and recombination mechanisms in generation of diversity in multigene families. To enable ready availability of VSG sequences for addressing these general questions, and trypanosome-specific questions, we have created VSGdb, a database of all known sequences.  相似文献   
997.

Background

We aimed to assess whether we could identify a graded association between increasing number of components of the metabolic syndrome and cardiac structural and functional abnormalities independently of predicted risk of coronary heart disease by the Framingham risk score.

Methods

We conducted a cross-sectional study on a random sample of the urban population of Porto aged 45 years or over. Six hundred and eighty-four participants were included. Data were collected by a structured clinical interview with a physician, ECG and a transthoracic M-mode and 2D echocardiogram. The metabolic syndrome was defined according to ATPIII-NCEP. The association between the number of features of the metabolic syndrome and the cardiac structural and functional abnormalities was assessed by 3 multivariate regression models: adjusting for age and gender, adjusting for the 10-year predicted risk of coronary heart disease by Framingham risk score and adjusting for age, gender and systolic blood pressure.

Results

There was a positive association between the number of features of metabolic syndrome and parameters of cardiac structure and function, with a consistent and statistically significant trend for all cardiac variables considered when adjusting for age and gender. Parameters of left ventricular geometry patterns, left atrial diameter and diastolic dysfunction maintained this trend when taking into account the 10-year predicted risk of coronary heart disease by the Framingham score as an independent variable, while left ventricular systolic dysfunction did not. The prevalence of left ventricular diastolic dysfunction, and the mean left ventricular mass, left ventricular diameter and left atrial diameter increased significantly with the number of features of the metabolic syndrome when additionally adjusting for systolic blood pressure as a continuous variable.

Conclusion

Increasing severity of metabolic syndrome was associated with increasingly compromised structure and function of the heart. This association was independent of Framingham risk score for indirect indices of diastolic dysfunction but not systolic dysfunction, and was not explained by blood pressure level.  相似文献   
998.
The Neuropeptide Head Activator (HA), pGlu-Pro-Pro-Gly-Gly-Ser-Lys-Val-Ile-Leu-Phe (pGlu is pyroglutamic acid), is involved in head-specific growth and differentiation processes in the freshwater coelenterate Hydra attenuata. Peptides of identical sequence have also been isolated from higher-organism tissues such as human and bovine hypothalamus. Early studies by molecular sieve chromatography suggested that HA dimerizes with high affinity (K(d) approximately 1 nM). This dimerization was proposed to occur via antiparallel beta-sheet formation between the Lys(7)-Phe(11) segments in each HA molecule. We conducted biophysical studies on synthetic HA in order to gain insight into its structure and aggregation tendencies. We found by analytical ultracentrifugation that HA is monomeric at low millimolar concentrations. Studies by (1)H-NMR revealed that HA did not adopt any significant secondary structure in solution. We found no NOEs that would support the proposed dimer structure. We probed the propensity of the Lys(7)-Phe(11) fragment to form antiparallel beta-sheet by designing peptides in which two such fragments are joined by a two-residue linker. These peptides were intended to form stable beta-hairpin structures with cross-strand interactions that mimic those of the proposed HA dimer interface. We found that the HA-derived fragments may be induced to form intramolecular beta-sheet, albeit only weakly, when linked by the highly beta-hairpin-promoting D-Pro-Gly turn, but not when linked by the more flexible Gly-Gly unit. These findings suggest that the postulated mode of HA dimerization and the proposed propensity of the molecule to form discrete aggregates with high affinity are incorrect.  相似文献   
999.
Previous evaluations of inactivated whole-virus and envelope subunit vaccines to equine infectious anemia virus (EIAV) have revealed a broad spectrum of efficacy ranging from highly type-specific protection to severe enhancement of viral replication and disease in experimentally immunized equids. Among experimental animal lentivirus vaccines, immunizations with live attenuated viral strains have proven most effective, but the vaccine efficacy has been shown to be highly dependent on the nature and severity of the vaccine virus attenuation. We describe here for the first time the characterization of an experimental attenuated proviral vaccine, EIAV(UK)deltaS2, based on inactivation of the S2 accessory gene to down regulate in vivo replication without affecting in vitro growth properties. The results of these studies demonstrated that immunization with EIAV(UK)deltaS2 elicited mature virus-specific immune responses by 6 months and that this vaccine immunity provided protection from disease and detectable infection by intravenous challenge with a reference virulent biological clone, EIAV(PV). This level of protection was observed in each of the six experimental horses challenged with the reference virulent EIAV(PV) by using a low-dose multiple-exposure protocol (three administrations of 10 median horse infectious doses [HID(50)], intravenous) designed to mimic field exposures and in all three experimentally immunized ponies challenged intravenously with a single inoculation of 3,000 HID(50). In contrast, na?ve equids subjected to the low- or high-dose challenge develop a detectable infection of challenge virus and acute disease within several weeks. Thus, these data demonstrate that the EIAV S2 gene provides an optimal site for modification to achieve the necessary balance between attenuation to suppress virulence and replication potential to sufficiently drive host immune responses to produce vaccine immunity to viral exposure.  相似文献   
1000.
CD1d-restricted T cells (NKT cells) are innate memory cells activated by lipid Ags and play important roles in the initiation and regulation of the immune response. However, little is known about the trafficking patterns of these cells or the tissue compartment in which they exert their regulatory activity. In this study, we determined the chemokine receptor profile expressed by CD1d-restricted T cells found in the peripheral blood of healthy volunteers as well as CD1d-restricted T cell clones. CD1d-restricted T cells were identified by Abs recognizing the invariant Valpha24 TCR rearrangement or by binding to CD1d-Fc fusion tetramers loaded with alpha-GalCer. CD1d-restricted T cells in the peripheral blood and CD1d-restricted T cell clones expressed high levels of CXCR3, CCR5, and CCR6; intermediate levels of CXCR4 and CXCR6; and low levels of CXCR1, CCR1, CCR2, and CX(3)CR1, a receptor pattern often associated with tissue-infiltrating effector Th1 cells and CD8+ T cells. Very few of these cells expressed the lymphoid-homing receptors CCR7 or CXCR5. CCR4 was expressed predominantly on CD4+, but not on double-negative CD1d-restricted T cells, which may indicate differential trafficking patterns for these two functionally distinct subsets. CD1d-restricted T cell clones responded to chemokine ligands for CXCR1/2, CXCR3, CXCR4, CXCR6, CCR4, and CCR5 in calcium flux and/or chemotaxis assays. These data indicate that CD1d-restricted T cells express a chemokine receptor profile most similar to Th1 inflammatory homing cells and suggest that these cells perform their function in peripheral tissue sites rather than in secondary lymphoid organs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号