首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15402篇
  免费   1448篇
  国内免费   4篇
  2023年   81篇
  2022年   204篇
  2021年   435篇
  2020年   266篇
  2019年   297篇
  2018年   346篇
  2017年   302篇
  2016年   488篇
  2015年   847篇
  2014年   909篇
  2013年   993篇
  2012年   1338篇
  2011年   1412篇
  2010年   880篇
  2009年   739篇
  2008年   956篇
  2007年   945篇
  2006年   892篇
  2005年   719篇
  2004年   785篇
  2003年   685篇
  2002年   675篇
  2001年   138篇
  2000年   79篇
  1999年   110篇
  1998年   150篇
  1997年   86篇
  1996年   75篇
  1995年   77篇
  1994年   78篇
  1993年   96篇
  1992年   60篇
  1991年   55篇
  1990年   47篇
  1989年   34篇
  1988年   37篇
  1987年   38篇
  1986年   28篇
  1985年   35篇
  1984年   44篇
  1983年   27篇
  1982年   44篇
  1981年   36篇
  1980年   33篇
  1979年   23篇
  1978年   33篇
  1977年   18篇
  1976年   21篇
  1975年   15篇
  1974年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
231.
Species distribution models (SDMs) correlate species occurrences with environmental predictors, and can be used to forecast distributions under future climates. SDMs have been criticized for not explicitly including the physiological processes underlying the species response to the environment. Recently, new methods have been suggested to combine SDMs with physiological estimates of performance (physiology-SDMs). In this study, we compare SDM and physiology-SDM predictions for select marine species in the Mediterranean Sea, a region subjected to exceptionally rapid climate change. We focused on six species and created physiology-SDMs that incorporate physiological thermal performance curves from experimental data with species occurrence records. We then contrasted projections of SDMs and physiology-SDMs under future climate (year 2100) for the entire Mediterranean Sea, and particularly the ‘warm’ trailing edge in the Levant region. Across the Mediterranean, we found cross-validation model performance to be similar for regular SDMs and physiology-SDMs. However, we also show that for around half the species the physiology-SDMs substantially outperform regular SDM in the warm Levant. Moreover, for all species the uncertainty associated with the coefficients estimated from the physiology-SDMs were much lower than in the regular SDMs. Under future climate, we find that both SDMs and physiology-SDMs showed similar patterns, with species predicted to shift their distribution north-west in accordance with warming sea temperatures. However, for the physiology-SDMs predicted distributional changes are more moderate than those predicted by regular SDMs. We conclude, that while physiology-SDM predictions generally agree with the regular SDMs, incorporation of the physiological data led to less extreme range shift forecasts. The results suggest that climate-induced range shifts may be less drastic than previously predicted, and thus most species are unlikely to completely disappear with warming climate. Taken together, the findings emphasize that physiological experimental data can provide valuable supplemental information to predict range shifts of marine species.  相似文献   
232.
Understanding the drivers of biodiversity is important for forecasting changes in the distribution of life on earth. However, most studies of biodiversity are limited by uneven sampling effort, with some regions or taxa better sampled than others. Numerous methods have been developed to account for differences in sampling effort, but most methods were developed for systematic surveys in which all study units are sampled using the same design and assemblages are sampled randomly. Databases compiled from multiple sources, such as from the literature, often violate these assumptions because they are composed of studies that vary widely in their goals and methods. Here, we compared the performance of several popular methods for estimating parasite diversity based on a large and widely used parasite database, the Global Mammal Parasite Database (GMPD). We created artificial datasets of host–parasite interactions based on the structure of the GMPD, then used these datasets to evaluate which methods best control for differential sampling effort. We evaluated the precision and bias of seven methods, including species accumulation and nonparametric diversity estimators, compared to analyzing the raw data without controlling for sampling variation. We find that nonparametric estimators, and particularly the Chao2 and second-order jackknife estimators, perform better than other methods. However, these estimators still perform poorly relative to systematic sampling, and effect sizes should be interpreted with caution because they tend to be lower than actual effect sizes. Overall, these estimators are more effective in comparative studies than for producing true estimates of diversity. We make recommendations for future sampling strategies and statistical methods that would improve estimates of global parasite diversity.  相似文献   
233.
The mechanism by which a disordered peptide nucleates and forms amyloid is incompletely understood. A central domain of β‐amyloid (Aβ21–30) has been proposed to have intrinsic structural propensities that guide the limited formation of structure in the process of fibrillization. In order to test this hypothesis, we examine several internal fragments of Aβ, and variants of these either cyclized or with an N‐terminal Cys. While Aβ21–30 and variants were always monomeric and unstructured (circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMRS)), we found that the addition of flanking hydrophobic residues in Aβ16–34 led to formation of typical amyloid fibrils. NMR showed no long‐range nuclear overhauser effect (nOes) in Aβ21–30, Aβ16–34, or their variants, however. Serial 1H‐15N‐heteronuclear single quantum coherence spectroscopy, 1H‐1H nuclear overhauser effect spectroscopy, and 1H‐1H total correlational spectroscopy spectra were used to follow aggregation of Aβ16–34 and Cys‐Aβ16–34 at a site‐specific level. The addition of an N‐terminal Cys residue (in Cys‐Aβ16–34) increased the rate of fibrillization which was attributable to disulfide bond formation. We propose a scheme comparing the aggregation pathways for Aβ16–34 and Cys‐Aβ16–34, according to which Cys‐Aβ16–34 dimerizes, which accelerates fibril formation. In this context, cysteine residues form a focal point that guides fibrillization, a role which, in native peptides, can be assumed by heterogeneous nucleators of aggregation.  相似文献   
234.
235.
Warming, eutrophication (nutrient fertilization) and brownification (increased loading of allochthonous organic matter) are three global trends impacting lake ecosystems. However, the independent and synergistic effects of resource addition and warming on autotrophic and heterotrophic microorganisms are largely unknown. In this study, we investigate the independent and interactive effects of temperature, dissolved organic carbon (DOC, both allochthonous and autochthonous) and nitrogen (N) supply, in addition to the effect of spatial variables, on the composition, richness, and evenness of prokaryotic and eukaryotic microbial communities in lakes across elevation and N deposition gradients in the Sierra Nevada mountains of California, USA. We found that both prokaryotic and eukaryotic communities are structured by temperature, terrestrial (allochthonous) DOC and latitude. Prokaryotic communities are also influenced by total and aquatic (autochthonous) DOC, while eukaryotic communities are also structured by nitrate. Additionally, increasing N availability was associated with reduced richness of prokaryotic communities, and both lower richness and evenness of eukaryotes. We did not detect any synergistic or antagonistic effects as there were no interactions among temperature and resource variables. Together, our results suggest that (a) organic and inorganic resources, temperature, and geographic location (based on latitude and longitude) independently influence lake microbial communities; and (b) increasing N supply due to atmospheric N deposition may reduce richness of both prokaryotic and eukaryotic microbes, probably by reducing niche dimensionality. Our study provides insight into abiotic processes structuring microbial communities across environmental gradients and their potential roles in material and energy fluxes within and between ecosystems.  相似文献   
236.
Media preparation for perfusion cell culture processes contributes significantly to operational costs and the footprint of continuous operations for therapeutic protein manufacturing. In this study, definitions are given for the use of a perfusion equivalent nutrient feed stream which, when used in combination with basal perfusion medium, supplements the culture with targeted compounds and increases the medium depth. Definitions to compare medium and feed depth are given in this article. Using a concentrated nutrient feed, a 1.8-fold medium consumption (MC) decrease and a 1.67-fold increase in volumetric productivity (PR) were achieved compared to the initial condition. Later, this strategy was used to push cell densities above 100 × 106 cells/ml while using a perfusion rate below 2 RV/day. In this example, MC was also decreased 1.8-fold compared to the initial condition, but due to the higher cell density, PR was increased 3.1-fold and to an average PR value of 1.36 g L−1 day−1 during a short stable phase, and versus 0.46 g L−1 day−1 in the initial condition. Overall, the performance improvements were aligned with the given definitions. This multiple feeding strategy can be applied to gain some flexibility during process development and also in a manufacturing set-up to enable better control on nutrient addition.  相似文献   
237.
While genetic diversity of threatened species is a major concern of conservation biologists, historic patterns of genetic variation are often unknown. A powerful approach to assess patterns and processes of genetic erosion is via ancient DNA techniques. Herein, we analyzed mtDNA from historical samples (1800s to present) of Andean Condors (Vultur gryphus) to investigate whether contemporary low genetic variability is the result of recent human expansion and persecution, and compared this genetic history to that of California condors (Gymnogyps californianus).We then explored historic demographies for both species via coalescent simulations. We found that Andean condors have lost at least 17% of their genetic variation in the early 20th century. Unlike California condors, however, low mtDNA diversity in the Andean condor was mostly ancient, before European arrival. However, we found that both condor species shared similar demographies in that population bottlenecks were recent and co‐occurred with the introduction of livestock to the Americas and the global collapse of marine mammals. Given the combined information on genetic and demographic processes, we suggest that the protection of key habitats should be targeted for conserving extant genetic diversity and facilitate the natural recolonization of lost territories, while nuclear genomic data should be used to inform translocation plans.  相似文献   
238.
Culture, Medicine, and Psychiatry - This article examines the historiography of depression, with an eye to illuminating wider issues in the social study of psychiatry and depression. It argues that...  相似文献   
239.
240.
Biogeochemistry - Spectroscopy is a powerful means of increasing the availability of soil data necessary for understanding carbon cycling in a changing world. Here, we develop a calibration...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号