首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15523篇
  免费   1465篇
  国内免费   4篇
  2023年   87篇
  2022年   151篇
  2021年   435篇
  2020年   266篇
  2019年   298篇
  2018年   353篇
  2017年   303篇
  2016年   491篇
  2015年   853篇
  2014年   914篇
  2013年   1001篇
  2012年   1344篇
  2011年   1423篇
  2010年   885篇
  2009年   746篇
  2008年   966篇
  2007年   954篇
  2006年   901篇
  2005年   722篇
  2004年   797篇
  2003年   691篇
  2002年   681篇
  2001年   142篇
  2000年   79篇
  1999年   112篇
  1998年   153篇
  1997年   88篇
  1996年   78篇
  1995年   77篇
  1994年   79篇
  1993年   97篇
  1992年   60篇
  1991年   54篇
  1990年   49篇
  1989年   34篇
  1988年   37篇
  1987年   43篇
  1986年   32篇
  1985年   41篇
  1984年   53篇
  1983年   32篇
  1982年   47篇
  1981年   39篇
  1980年   35篇
  1979年   28篇
  1978年   34篇
  1977年   17篇
  1976年   23篇
  1974年   15篇
  1972年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Streptococcus pneumoniae isolates typically express one of over 90 immunologically distinguishable polysaccharide capsules (serotypes), which can be classified into “serogroups” based on cross-reactivity with certain antibodies. Pneumococci can alter their serotype through recombinations affecting the capsule polysaccharide synthesis (cps) locus. Twenty such “serotype switching” events were fully characterised using a collection of 616 whole genome sequences from systematic surveys of pneumococcal carriage. Eleven of these were within-serogroup switches, representing a highly significant (p < 0.0001) enrichment based on the observed serotype distribution. Whereas the recombinations resulting in between-serogroup switches all spanned the entire cps locus, some of those that caused within-serogroup switches did not. However, higher rates of within-serogroup switching could not be fully explained by either more frequent, shorter recombinations, nor by genetic linkage to genes involved in β–lactam resistance. This suggested the observed pattern was a consequence of selection for preserving serogroup. Phenotyping of strains constructed to express different serotypes in common genetic backgrounds was used to test whether genotypes were physiologically adapted to particular serogroups. These data were consistent with epistatic interactions between the cps locus and the rest of the genome that were specific to serotype, but not serogroup, meaning they were unlikely to account for the observed distribution of capsule types. Exclusion of these genetic and physiological hypotheses suggested future work should focus on alternative mechanisms, such as host immunity spanning multiple serotypes within the same serogroup, which might explain the observed pattern.  相似文献   
982.
Altered placental function as a consequence of aberrant imprinted gene expression may be one mechanism mediating the association between low birth weight and increased cardiometabolic disease risk. Imprinted gene expression is regulated by epigenetic mechanisms, particularly DNA methylation (5mC) at differentially methylated regions (DMRs). While 5-hydroxymethylcytosine (5hmC) is also present at DMRs, many techniques do not distinguish between 5mC and 5hmC. Using human placental samples, we show that the expression of the imprinted gene CDKN1C associates with birth weight. Using specific techniques to map 5mC and 5hmC at DMRs controlling the expression of CDKN1C and the imprinted gene IGF2, we show that 5mC enrichment at KvDMR and DMR0, and 5hmC enrichment within the H19 gene body, associate positively with birth weight. Importantly, the presence of 5hmC at imprinted DMRs may complicate the interpretation of DNA methylation studies in placenta; future studies should consider using techniques that distinguish between, and permit quantification of, both modifications.  相似文献   
983.
The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC) and portal fibroblasts (PF). In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5’-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myo)fibroblasts and their contribution to the progression of liver fibrosis.  相似文献   
984.
mTOR is a central integrator of metabolic and immunological stimuli, dictating immune cell activation, proliferation and differentiation. In this study, we demonstrate that within a clonal population of activated T cells, there exist both mTORhi and mTORlo cells exhibiting highly divergent metabolic and immunologic functions. By taking advantage of the role of mTOR activation in controlling cellular size, we demonstrate that upon antigen recognition, mTORhi CD4+ T cells are destined to become highly glycolytic effector cells. Conversely, mTORlo T cells preferentially develop into long-lived cells that express high levels of Bcl-2, CD25, and CD62L. Furthermore, mTORlo T cells have a greater propensity to differentiate into suppressive Foxp3+ T regulatory cells, and this paradigm was also observed in human CD4+ T cells. Overall, these studies provide the opportunity to track the development of effector and memory T cells from naïve precursors, as well as facilitate the interrogation of immunologic and metabolic programs that inform these fates.  相似文献   
985.
Various studies have presented clinical or in vitro evidence linking bacteria to colorectal cancer, but these bacteria have not previously been concurrently quantified by qPCR in a single cohort. We quantify these bacteria (Fusobacterium spp., Streptococcus gallolyticus, Enterococcus faecalis, Enterotoxigenic Bacteroides fragilis (ETBF), Enteropathogenic Escherichia coli (EPEC), and afaC- or pks-positive E. coli) in paired tumour and normal tissue samples from 55 colorectal cancer patients. We further investigate the relationship between a) the presence and b) the level of colonisation of each bacterial species with site and stage of disease, age, gender, ethnicity and MSI-status. With the exception of S. gallolyticus, we detected all bacteria profiled here in both tumour and normal samples at varying frequencies. ETBF (FDR = 0.001 and 0.002 for normal and tumour samples) and afaC-positive E. coli (FDR = 0.03, normal samples) were significantly enriched in the colon compared to the rectum. ETBF (FDR = 0.04 and 0.002 for normal and tumour samples, respectively) and Fusobacterium spp. (FDR = 0.03 tumour samples) levels were significantly higher in late stage (III/IV) colorectal cancers. Fusobacterium was by far the most common bacteria detected, occurring in 82% and 81% of paired tumour and normal samples. Fusobacterium was also the only bacterium that was significantly higher in tumour compared to normal samples (p = 6e-5). We also identified significant associations between high-level colonisation by Fusobacterium and MSI-H (FDR = 0.05), age (FDR = 0.03) or pks-positive E. coli (FDR = 0.01). Furthermore, we exclusively identified atypical EPEC in our cohort, which has not been previously reported in association with colorectal cancer. By quantifying colorectal cancer-associated bacteria across a single cohort, we uncovered inter- and intra-individual patterns of colonization not previously recognized, as well as important associations with clinicopathological features, especially in the case of Fusobacterium and ETBF.  相似文献   
986.

Background

Hospital readmission rates are being used to evaluate performance. A survey of the present rates is needed before policies can be developed to decrease incidence of readmission. We address three questions: What is the present rate of 30-day readmission in orthopedics? How do factors such as orthopedic specialty, data source, patient insurance, and time of data collection affect the 30-day readmission rate? What are the causes and risk factors for 30-day readmissions?

Methods/Findings

A review was first registered with Prospero (CRD42014010293, 6/17/2014) and a meta-analysis was performed to assess the current 30-day readmission rate in orthopedics. Studies published after 2006 were retrieved, and 24 studies met the inclusion criteria. The 30-day readmission rate was extrapolated from each study along with the orthopedic subspecialty, data source, patient insurance, time of collection, patient demographics, and cause of readmission. A sensitivity analysis was completed on the stratified groups. The overall 30-day readmission rate across all orthopedics was 5.4 percent (95% confidence interval: 4.8,6.0). There was no significant difference between subspecialties. Studies that retrieved data from a multicenter registry had a lower 30-day readmission rate than those reporting data from a single hospital or a large national database. Patient populations that only included Medicare patients had a higher 30-day readmission rate than populations of all insurance. The 30-day readmission rate has decreased in the past ten years. Age, length of stay, discharge to skilled nursing facility, increased BMI, ASA score greater than 3, and Medicare/Medicaid insurance showed statistically positive correlation with increased 30-day readmissions in greater than 75 percent of studies. Surgical site complications accounted for 46 percent of 30-day readmissions.

Conclusions

This meta-analysis shows the present rate of 30-day readmissions in orthopedics. Demonstrable heterogeneity between studies underlines the importance of uniform collection and reporting of readmission rates for hospital evaluation and reimbursement.  相似文献   
987.
The adverse effects of traffic-related air pollution on children’s respiratory health have been widely reported, but few studies have evaluated the impact of traffic-control policies designed to reduce urban air pollution. We assessed associations between traffic-related air pollutants and respiratory/allergic symptoms amongst 8–9 year-old schoolchildren living within the London Low Emission Zone (LEZ). Information on respiratory/allergic symptoms was obtained using a parent-completed questionnaire and linked to modelled annual air pollutant concentrations based on the residential address of each child, using a multivariable mixed effects logistic regression analysis. Exposure to traffic-related air pollutants was associated with current rhinitis: NOx (OR 1.01, 95% CI 1.00–1.02), NO2 (1.03, 1.00–1.06), PM10 (1.16, 1.04–1.28) and PM2.5 (1.38, 1.08–1.78), all per μg/m3 of pollutant, but not with other respiratory/allergic symptoms. The LEZ did not reduce ambient air pollution levels, or affect the prevalence of respiratory/allergic symptoms over the period studied. These data confirm the previous association between traffic-related air pollutant exposures and symptoms of current rhinitis. Importantly, the London LEZ has not significantly improved air quality within the city, or the respiratory health of the resident population in its first three years of operation. This highlights the need for more robust measures to reduce traffic emissions.  相似文献   
988.
Small Heat Shock Proteins (sHSPs) are molecular chaperones that transiently interact with other proteins, thereby assisting with quality control of proper protein folding and/or degradation. They are also recruited to protect cells from a variety of stresses in response to extreme heat, heavy metals, and oxidative-reductive stress. Although ten human sHSPs have been identified, their likely diverse biological functions remain an enigma in health and disease, and much less is known about non-redundant roles in selective cells and tissues. Herein, we set out to comprehensively characterize the cardiac-restricted Heat Shock Protein B-2 (HspB2), which exhibited ischemic cardioprotection in transgenic overexpressing mice including reduced infarct size and maintenance of ATP levels. Global yeast two-hybrid analysis using HspB2 (bait) and a human cardiac library (prey) coupled with co-immunoprecipitation studies for mitochondrial target validation revealed the first HspB2 “cardiac interactome” to contain many myofibril and mitochondrial-binding partners consistent with the overexpression phenotype. This interactome has been submitted to the Biological General Repository for Interaction Datasets (BioGRID). A related sHSP chaperone HspB5 had only partially overlapping binding partners, supporting specificity of the interactome as well as non-redundant roles reported for these sHSPs. Evidence that the cardiac yeast two-hybrid HspB2 interactome targets resident mitochondrial client proteins is consistent with the role of HspB2 in maintaining ATP levels and suggests new chaperone-dependent functions for metabolic homeostasis. One of the HspB2 targets, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), has reported roles in HspB2 associated phenotypes including cardiac ATP production, mitochondrial function, and apoptosis, and was validated as a potential client protein of HspB2 through chaperone assays. From the clientele and phenotypes identified herein, it is tempting to speculate that small molecule activators of HspB2 might be deployed to mitigate mitochondrial related diseases such as cardiomyopathy and neurodegenerative disease.  相似文献   
989.
990.
Amyotrophic Lateral Sclerosis (ALS) is a rare and fatal neurodegenerative disease with a high unmet medical need. In this context, a potential therapy should be brought to patients in the most expeditious way and early exploration of pharmacology is highly beneficial. Ozanezumab, a humanised IgG monoclonal antibody against Nogo-A protein which is an inhibitor of neurite outgrowth, is currently under development for the treatment of ALS and has been recently assessed in 76 patients in a first-in-human study. Inadequate target engagement has been recognised as a major contributing reason for drug trial failures. In this work, we describe the development of a pharmacokinetic-pharmacodynamic (PKPD) model using immunohistochemistry (IHC) data of co-localization of ozanezumab with Nogo-A in skeletal muscle as a surrogate measure of target engagement. The rich plasma concentration data and the sparse IHC data after one or two intravenous doses of ozanezumab were modelled simultaneously using a non-linear mixed-effect approach. The final PKPD model was a two-compartment PK model combined with an effect compartment PD model that accounted for the delay in ozanezumab concentrations to reach the site of action which is skeletal muscle. Diagnostic plots showed a satisfactory fit of both PK and IHC data. The model was used as a simulation tool to design a dose regimen for sustained drug-target co-localization in a phase II study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号