首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15940篇
  免费   1525篇
  国内免费   4篇
  17469篇
  2023年   91篇
  2022年   231篇
  2021年   443篇
  2020年   268篇
  2019年   300篇
  2018年   352篇
  2017年   303篇
  2016年   496篇
  2015年   853篇
  2014年   913篇
  2013年   1012篇
  2012年   1352篇
  2011年   1432篇
  2010年   898篇
  2009年   752篇
  2008年   973篇
  2007年   963篇
  2006年   918篇
  2005年   733篇
  2004年   801篇
  2003年   704篇
  2002年   688篇
  2001年   155篇
  2000年   90篇
  1999年   129篇
  1998年   152篇
  1997年   95篇
  1996年   79篇
  1995年   87篇
  1994年   84篇
  1993年   103篇
  1992年   70篇
  1991年   69篇
  1990年   62篇
  1989年   50篇
  1988年   48篇
  1987年   57篇
  1986年   41篇
  1985年   48篇
  1984年   45篇
  1983年   33篇
  1982年   52篇
  1981年   46篇
  1980年   41篇
  1979年   34篇
  1978年   38篇
  1977年   19篇
  1976年   32篇
  1975年   20篇
  1974年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Recent advances in virology, gene therapy, and molecular and cell biology have provided insight into the mechanisms through which viruses can boost the anti-tumor immune response, or can infect and directly kill tumor cells. A recent experimental report (Bridle et al. in Molec. Ther. 18(8):1430–1439, 2010) showed that a sequential treatment approach that involves two viruses that carry the same tumor antigen leads to an improved anti-tumor response compared to the effect of each virus alone. In this article, we derive a mathematical model to investigate the anti-tumor effect of two viruses, and their interactions with the immune cells. We discuss the conditions necessary for permanent tumor elimination and, in this context, we stress the importance of investigating the long-term effect of non-linear interactions. In particular, we discuss multi-stability and multi-instability, two complex phenomena that can cause abrupt transitions between different states in biological and physical systems. In the context of cancer immunotherapies, the transitions between a tumor-free and a tumor-present state have so far been associated with the multi-stability phenomenon. Here, we show that multi-instability can also cause the system to switch from one state to the other. In addition, we show that the multi-stability is driven by the immune response, while the multi-instability is driven by the presence of the virus.  相似文献   
52.
In the 35 years since the revelation that short peptides bound to major histocompatibility complex class I and II molecules are the secret of the major histocompatibility complex–restricted nature of T-cell recognition, there has been enormous progress in characterizing the immunopeptidome, the repertoire of peptide presented for immunosurveillance. Here, the major milestones in the journey are marked, the contribution of proteasome-mediated splicing to the immunopeptidome is discussed, and exciting recent findings relating the immunopeptidome to the translatome revealed by ribosome profiling (RiboSeq) is detailed. Finally, what is needed for continued progress is opined about, which includes the infusion of talented young scientists into the antigen-processing field, currently undergoing a renaissance; thanks in part to the astounding success of T-cell–based cancer immunotherapy.  相似文献   
53.
54.
55.
Numerous human diseases arise because of defects in protein folding, leading to their degradation in the endoplasmic reticulum. Among them is cystic fibrosis (CF), caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR ), an epithelial anion channel. The most common mutation, F508del, disrupts CFTR folding, which blocks its trafficking to the plasma membrane. We developed a fluorescence detection platform using fluorogen-activating proteins (FAPs) to directly detect FAP-CFTR trafficking to the cell surface using a cell-impermeant probe. By using this approach, we determined the efficacy of new corrector compounds, both alone and in combination, to rescue F508del-CFTR to the plasma membrane. Combinations of correctors produced additive or synergistic effects, improving the density of mutant CFTR at the cell surface up to ninefold over a single-compound treatment. The results correlated closely with assays of stimulated anion transport performed in polarized human bronchial epithelia that endogenously express F508del-CFTR. These findings indicate that the FAP-tagged constructs faithfully report mutant CFTR correction activity and that this approach should be useful as a screening assay in diseases that impair protein trafficking to the cell surface.  相似文献   
56.
Risks and benefit evaluation for controlled human infection studies, where healthy volunteers are deliberately exposed to infectious agents to evaluate vaccine efficacy, should be explicit, systematic, thorough, and non-arbitrary. Decision analysis promotes these qualities using four steps: (1) determining explicit criteria and measures for evaluation, (2) identifying alternatives to the study, (3) defining the models used to estimate the measures for each alternative, and (4) running the models to produce the estimates and compare the alternatives. In this paper, we describe how decision analysis might be applied by funders and regulators, as well as by others contemplating the use of novel controlled human infection studies for vaccine development and evaluation.  相似文献   
57.
58.
59.
Compelling data supports the hypothesis that Pin1 inhibitors will be useful for the therapy of cancer: Pin1 deficient mice resist the induction of breast cancers normally evoked by expression of MMTV-driven Ras or Erb2 alleles. While Pin1 poses challenges for drug discovery, several groups have identified potent antagonists by structure based drug design, significant progress has been made designing peptidic inhibitors and a number of natural products have been found that blockade Pin1, notably epigallocatchechin gallate (EGCG), a major flavonoid in green tea. Here we critically discuss the modes of action and likely specificity of these compounds, concluding that a suitable chemical biology tool for probing the function of Pin1 has yet to be found. We conclude by outlining some open questions regarding the target validation of Pin1 and the prospects for identification of improved inhibitors in the future.  相似文献   
60.
Immobilization of uranium in groundwater can be achieved through microbial reduction of U(VI) to U(IV) upon electron donor addition. Microbial community structure was analyzed in ethanol-biostimulated and control sediments from a high-nitrate (>130 mM), low-pH, uranium-contaminated site in Oak Ridge, TN. Analysis of small subunit (SSU) rRNA gene clone libraries and polar lipid fatty acids from sediments revealed that biostimulation resulted in a general decrease in bacterial diversity. Specifically, biostimulation resulted in an increase in the proportion of Betaproteobacteria (10% of total clones in the control sediment versus 50 and 79% in biostimulated sediments) and a decrease in the proportion of Gammaproteobacteria and Acidobacteria. Clone libraries derived from dissimilatory nitrite reductase genes (nirK and nirS) were also dominated by clones related to Betaproteobacteria (98% and 85% of total nirK and nirS clones, respectively). Within the nirK libraries, one clone sequence made up 59 and 76% of sequences from biostimulated sediments but only made up 10% of the control nirK library. Phylogenetic analysis of SSU rRNA and nirK gene sequences from denitrifying pure cultures isolated from the site indicate that all belong to a Castellaniella species; nearly identical sequences also constituted the majority of biostimulated SSU rRNA and nirK clone libraries. Thus, by combining culture-independent with culture-dependent techniques, we were able to link SSU rRNA clone library information with nirK sequence data and conclude that a potentially novel Castellaniella species is important for in situ nitrate removal at this site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号