首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16393篇
  免费   1561篇
  国内免费   4篇
  2023年   82篇
  2022年   204篇
  2021年   450篇
  2020年   273篇
  2019年   303篇
  2018年   356篇
  2017年   316篇
  2016年   498篇
  2015年   869篇
  2014年   927篇
  2013年   1035篇
  2012年   1382篇
  2011年   1454篇
  2010年   893篇
  2009年   759篇
  2008年   991篇
  2007年   977篇
  2006年   931篇
  2005年   748篇
  2004年   825篇
  2003年   719篇
  2002年   711篇
  2001年   171篇
  2000年   100篇
  1999年   139篇
  1998年   158篇
  1997年   94篇
  1996年   84篇
  1995年   83篇
  1994年   83篇
  1993年   102篇
  1992年   83篇
  1991年   77篇
  1990年   71篇
  1989年   51篇
  1988年   63篇
  1987年   61篇
  1986年   61篇
  1985年   63篇
  1984年   68篇
  1983年   47篇
  1982年   61篇
  1981年   44篇
  1980年   49篇
  1979年   37篇
  1978年   52篇
  1977年   28篇
  1976年   30篇
  1975年   27篇
  1974年   33篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
The characteristics of malate transport into aerobically grown cells of the purple photosynthetic bacterium Rhodobacter capsulatus were determined. A single transport system was distinguished kinetically which displayed a Kt value of 2.9 ± 1.2 μM and Vmax of 43 ± 6 nmol · min-1 · mg-1 protein. Competition experiments indicated that the metabolically related C4-dicarboxylates succinate and fumarate are also transported by this system. Malate uptake was sensitive to osmotic shock and evidence from the binding of radiolabelled malate and succinate to periplasmic protein fractions indicated that transport is mediated by a dicarboxylate binding protein. The activity of the transport system was studied as a function of external and internal pH and it was found that a marked activation of uptake occurred at intracellular pH values greater than 7. The use of a high affinity binding protein dependent system to transport a major carbon and energy source suggests that Rhodobacter capsulatus would be capable of obtaining growth sustaining quantities of C4-dicarboxylates even if these were present at very low concentrations in the environment.  相似文献   
72.
Hybrid genetic elements, Mud-P and Mud-Q (collectively, Mud-P22s), have been constructed that carry two-thirds of the temperate Salmonella phage P22 genome sandwiched between the ends of transposon Mu. Insertions of these elements in the Salmonella chromosome generate locked-in P22 prophages that cannot excise. Upon induction (as a consequence of the inactivation of P22 c2 repressor), a locked-in prophage replicates its DNA in situ, resulting in the amplification of neighboring regions of the chromosome and the processive packaging of three contiguous headsful of adjacent DNA in one direction from the P22 packaging site, pac. Phage particles in an induced lysate of a Mud-P22 lysogen contain DNA molecules corresponding to several minutes of chromosomal DNA adjacent to the site of prophage insertion and transduce nearby genetic markers with high efficiencies. Mud-P22 prophages have been introduced into an F' episome by transposition; resident Mud insertions on the Salmonella chromosome may be converted to Mud-P22 insertions by homologous recombination in P22-mediated transductional crosses.  相似文献   
73.
74.
The catalytic step of bacterial cytochrome P-450cam, i.e., the step of the reaction cycle in which the product 5-exo-hydroxycamphor is formed and released by the enzyme, has been studied by stopped-flow spectrophotometry. Our approach has been to observe a single-turnover reaction between reduced putidaredoxin and oxygenated camphor-bound cytochrome P-450cam. Multiple turnovers are prevented by using the inhibitor metyrapone to trap the cytochrome after product release, which prevents binding of another camphor molecule. The time course of the reaction has been measured at several wavelengths and has been found to be biphasic. The relatively slow second phase of the reaction is the reduction of ferric, metyrapone-bound cytochrome P-450cam. The first phase coincides with the formation of product stoichiometrically with cytochrome P-450cam, as measured by gas chromatography. A detailed kinetic study of the first phase reveals a hyperbolic dependence of initial rate upon putidaredoxin concentration at a fixed, limiting concentration of cytochrome P-450cam. The Vmax is 53 microM per second per microM cytochrome, and the Km for putidaredoxin is 33 microM. The hyperbolic relationship between initial rate and putidaredoxin concentration supports a model in which the cytochrome rapidly binds putidaredoxin, then undergoes one or more slower intracomplex steps.  相似文献   
75.
Abnormal low density lipoprotein metabolism in apolipoprotein E deficiency   总被引:2,自引:0,他引:2  
Apolipoprotein(apo) E deficiency is an inherited disease characterized by type III hyperlipoproteinemia and less than 1% normal plasma apoE concentration. The role of apoE in LDL metabolism was investigated by quantitating the metabolism of radiolabeled normal and apoE-deficient LDL in both normal and apoE-deficient subjects. ApoE deficiency resulted in an accumulation of plasma IDL, and a decreased synthesis of LDL consistent with a block in the conversion of IDL to LDL. The LDL isolated from the apoE-deficient patient was similar to normal LDL in hydrated density, size, and composition. However, the apoE-deficient LDL was kinetically abnormal with delayed catabolism in both normal subjects and the apoE-deficient patient. In addition, the catabolism of normal LDL in the apoE-deficient subject was increased. These results were interpreted as indicating that apoE is necessary for the conversion of IDL to LDL and the formation of kinetically normal LDL. The rapid catabolism of normal LDL in the apoE-deficient patient suggests an up-regulation of the hepatic LDL receptor pathway. Based on these results, apoE is proposed to play an important role in the conversion of IDL to LDL, the formation of kinetically normal LDL, and the regulation of LDL receptor function.  相似文献   
76.
Summary Step-wise multiple regression was employed to probe the determinants of species diversity of day geckos (Phelsuma) in the Indian Ocean. Independent variables were area, elevation, and two measures of isolation. Distance from Madagascar and island height (an indicator of habitat diversity) were the two most important predictors of species richness. Similar studies on other taxa rarely find isolation to be a major factor. The relatively poor dispersal abilities of reptiles may explain why isolation, rather than attributes of the islands, are more important in this case. The regressions also indicate that habitat diversity (assumed to correlate with maximum island elevation) is more important than area per se in determining species diversity. These results agree with predictions of the equilibrium theory of island biogeography, but historical processes have also greatly influenced species richness.  相似文献   
77.
The superficial cortical fiber cells of the bovine lens contain membrane-associated proteins of 150,000, 80,000, and 78,000 D that cross-react with antisera prepared against red blood cell (RBC) protein 4.1 (Aster, J. C., G. J. Brewer, S. M. Hanash, and H. Maisel, 1984, Biochem. J., 224:609-616). To further study their relationship to protein 4.1, these proteins were immunoprecipitated from detergent extracts of crude lens membranes with purified polyclonal and monoclonal anti-4.1 antibodies and resolved by SDS PAGE. The electrophoretic mobilities of the lens proteins of 80,000 and 78,000 D were found to be identical to bovine RBC protein 4.1a and protein 4.1b, respectively. One- and two-dimensional peptide mapping revealed that a high degree of structural homology exists among all three of the lens 4.1-like proteins and RBC protein 4.1a and protein 4.1b. Despite the large difference in apparent molecular mass, the 150,000-D lens protein showed only minor peptide map differences. A nitrocellulose filter overlay assay showed that all three of the lens 4.1-like proteins bind to RBC and lens spectrins. We conclude that the bovine lens contains proteins of 80,000 and 78,000 D that are highly similar to protein 4.1 in structure and functional capacity. Additionally, the lens also contains a 4.1 isomorph of 150 kD. Analogous to RBC protein 4.1, these proteins may function in the lens by promoting association of spectrin with actin and by playing a role in the coupling of lens cytoskeleton to plasma membrane.  相似文献   
78.
Crystalline, alpha-glucosidase-free sweet potato beta-amylase was found to catalyze hydration of the enolic bond of maltal (alpha-D-glucopyranosyl-(1----4)-2-deoxy-D-glucal) to form 2-deoxymaltose (alpha-D-glucopyranosyl-(1----4)-2-deoxy-D-glucose). The reaction at pH 5.0 showed Vmax 0.082 mumol/min/mg and km 94.5 mM. An exceptionally large solvent deuterium isotope effect, VH/VD = 8, was observed from pH(pD) 4.2 to 5.4; and at pH(pD) 5.0 the effect was found to be directly related to the mole fraction of 2H. The hydration product, isolated from a beta-amylase/maltal digest in acetate-d4/D2O buffer (pD 5.4) was identified through its 1H NMR spectrum as alpha-D-glucopyranosyl-(1----4)-2-deoxy-D-[2(a)-2H]glucose. beta-Amylase in 2H2O thus catalyzes deuteration of the double bond of maltal from a direction opposite that assumed for protonation of the glycosidic oxygen atoms of starch chains and maltosaccharides. This finding confirms the functional flexibility of the enzyme's catalytic groups first demonstrated in studies of the reactions catalyzed with alpha- and beta-maltosyl fluoride (Hehre, E. J., Brewer, C. F., and Genghof, D. S. (1979) J. Biol. Chem. 254, 5942-5950). A possible mechanism of the maltal hydration by beta-amylase involves protonation of substrate from above as the first and rate-limiting step, followed by formation of a transient carbonium ion-enzyme intermediate. Although other possible mechanisms cannot be ruled out, it is clear that this hydration reaction differs from reactions catalyzed with amylaceous substrates and with alpha- and beta-maltosyl fluoride. The ability of beta-amylase to catalyze different types of reactions with different substrates is discussed with respect to observations with other enzymes that, likewise, strongly support the view (Hehre et al.) that the catalytic groups of glycosylases in general may be functionally flexible beyond requirements of the principle of microscopic reversibility.  相似文献   
79.
Lentil lectin (LcH) and pea lectin (PSA) belong to the class of D-glucose/D-mannose binding lectins and resemble concanavalin A (Con A) closely in physicochemical, structural, and biological properties. LcH and PSA, like Con A, are Ca2+-Mn2+ metalloproteins that require the metal ions for their saccharide binding and biological activities. Studies of the relationship between the metal ions binding and saccharide binding activity in LcH and PSA have been difficult due to the problem of metal ion replacement in these proteins. We now report a method of metal ion replacement in both lectins that allows substitution of the Mn2+ in the native proteins with a variety of transition metal ions, as well as substitution of the Ca2+ with Cd2+ in a particular complex. The following metal ion derivatives of both LcH and PSA have been prepared: Ca2+-Zn2+, Ca2+-Co2+, Ca2+-Ni2+, and Cd2+-Cd2+. All of these derivatives are as active as the native lectins, as demonstrated by precipitation with specific polysaccharides, saccharide inhibition of precipitation, and hemagglutination assays. The yields of these derivatives are good (generally greater than 70%), and the degree of metal ion incorporation is high (generally greater than 90%). The method of preparation is quite different from that for metal ion substitution in Con A, which proceeds via the apoprotein. In contrast, the apoproteins of LcH and PSA are unstable, aggregate above pH 4.0, and cannot be remetallized once formed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
80.
Reaction of proteins with Woodward's Reagent K in 0.05 ionic strength Tris-HCl, pH 7.8, followed by removal of excess reagent by chromatography on Sephadex G-25 in the same buffer, results in covalently attached chromophores with an absorption maximum at 340 nm and an extinction coefficient of 7000 M-1 cm-1. This absorbance can be used to quantitate the reaction of Woodward's Reagent K with carboxyl groups in proteins, provided sulfhydryl groups do not react. The chromophore also enables specific detection and identification of carboxyl-modified peptides upon separation by chromatography or electrophoresis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号