首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1333篇
  免费   121篇
  1454篇
  2021年   12篇
  2020年   15篇
  2019年   20篇
  2018年   14篇
  2017年   16篇
  2016年   18篇
  2015年   38篇
  2014年   51篇
  2013年   49篇
  2012年   66篇
  2011年   45篇
  2010年   51篇
  2009年   42篇
  2008年   57篇
  2007年   68篇
  2006年   59篇
  2005年   55篇
  2004年   40篇
  2003年   46篇
  2002年   30篇
  2001年   50篇
  2000年   28篇
  1999年   38篇
  1998年   23篇
  1997年   15篇
  1996年   14篇
  1995年   15篇
  1994年   12篇
  1993年   9篇
  1992年   22篇
  1991年   26篇
  1990年   18篇
  1989年   18篇
  1988年   23篇
  1987年   16篇
  1986年   32篇
  1985年   16篇
  1984年   13篇
  1983年   8篇
  1982年   11篇
  1980年   10篇
  1979年   26篇
  1978年   12篇
  1977年   12篇
  1976年   12篇
  1975年   13篇
  1974年   11篇
  1973年   14篇
  1972年   9篇
  1881年   8篇
排序方式: 共有1454条查询结果,搜索用时 0 毫秒
121.
122.
123.
124.
125.
Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short‐term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil‐borne microbial community. Long‐term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by 13C pulse‐chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA‐stable isotope probing (RNA‐SIP), in combination with real‐time PCR and PCR‐DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the 13C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes.  相似文献   
126.
Baer SG  Blair JM  Collins SL  Knapp AK 《Oecologia》2004,139(4):617-629
Availability and heterogeneity of resources have a strong influence on plant community structure in undisturbed systems, as well as those recovering from disturbance. Less is known about the role of resource availability and heterogeneity in restored communities, although restoration provides a valuable opportunity to test our understanding of factors that influence plant community assembly. We altered soil nitrogen (N) availability and soil depth during a prairie restoration to determine if the availability and/or heterogeneity of soil resources influenced plant community composition in restored grassland communities. Plant community responses to three levels of N availability (ambient, enriched by fertilization, and reduced by carbon amendment) and two levels of soil depth (deep and shallow) were evaluated. In addition, we evaluated plant community responses to four whole plot heterogeneity treatments created from the six possible combinations of soil N availability and soil depth. The soil depth treatment had little influence on community structure during the first 3 years of restoration. Total diversity and richness declined over time under annual N enrichment, whereas diversity was maintained and richness increased over time in soil with reduced N availability. Non-native species establishment was lowest in reduced-N soil in the initial year, but their presence was negligible in all of the soil N treatments by the second year of restoration. Panicum virgatum, a native perennial C4 grass, was the dominant species in all soil N treatments by year three, but the magnitude of its dominance was lowest in the reduced-N soil and highest in enriched-N soil. Consequently, the relative cover of P. virgatum was strongly correlated with community dominance and inversely related to diversity. The differential growth response of P. virgatum to soil N availability led to a higher degree of community similarity to native prairie in the reduced-N treatment than in the enriched-N treatment. There were no differences in plant community structure among the four whole plot-level heterogeneity treatments, which all exhibited the same degree of similarity to native prairie. Diversity and community heterogeneity in the whole-plot treatments appeared to be regulated by the dominant species effect on light availability, rather than soil N heterogeneity per se. Our results indicate that a strong differential response of a dominant species to resource availability in a restored community can regulate community structure, diversity, and similarity to the native (or target) community, but the importance of resource heterogeneity in restoring diversity may be dampened in systems where a dominant species can successfully establish across a range of resource availability.  相似文献   
127.
In science, it sometimes occurs that an event is directly observed, and on other occasions that it is not directly observed but one can make the unambiguous inference that it has occurred. Is there any difference concerning the analysis of data arising from these two situations? In this note we show that there is such a difference in one case arising frequently in genetics. The difference derives from the fact that the ability to make the unambiguous inference arises only from a restricted form of data.  相似文献   
128.
Nothofagus (southern beech), with an 80-million-year-old fossil record, has become iconic as a plant genus whose ancient Gondwanan relationships reach back into the Cretaceous era. Closely associated with Wegener's theory of “Kontinentaldrift”, Nothofagus has been regarded as the “key genus in plant biogeography”. This paradigm has the New Zealand species as passengers on a Moa's Ark that rafted away from other landmasses following the breakup of Gondwana. An alternative explanation for the current transoceanic distribution of species seems almost inconceivable given that Nothofagus seeds are generally thought to be poorly suited for dispersal across large distances or oceans. Here we test the Moa's Ark hypothesis using relaxed molecular clock methods in the analysis of a 7.2-kb fragment of the chloroplast genome. Our analyses provide the first unequivocal molecular clock evidence that, whilst some Nothofagus transoceanic distributions are consistent with vicariance, trans-Tasman Sea distributions can only be explained by long-distance dispersal. Thus, our analyses support the interpretation of an absence of Lophozonia and Fuscospora pollen types in the New Zealand Cretaceous fossil record as evidence for Tertiary dispersals of Nothofagus to New Zealand. Our findings contradict those from recent cladistic analyses of biogeographic data that have concluded transoceanic Nothofagus distributions can only be explained by vicariance events and subsequent extinction. They indicate that the biogeographic history of Nothofagus is more complex than envisaged under opposing polarised views expressed in the ongoing controversy over the relevance of dispersal and vicariance for explaining plant biodiversity. They provide motivation and justification for developing more complex hypotheses that seek to explain the origins of Southern Hemisphere biota.  相似文献   
129.
130.
In the present study, we tested the hypothesis that 17beta-estradiol (betaE2) is a neuroprotectant in the retina, using two experimental approaches: 1) hydrogen peroxide (H(2)O(2))-induced retinal neuron degeneration in vitro, and 2) light-induced photoreceptor degeneration in vivo. We demonstrated that both betaE2 and 17alpha-estradiol (alphaE2) significantly protected against H(2)O(2)-induced retinal neuron degeneration; however, progesterone had no effect. betaE2 transiently increased the phosphoinositide 3-kinase (PI3K) activity, when phosphoinositide 4,5-bisphosphate and [(32)gammaATP] were used as substrate. Phospho-Akt levels were also transiently increased by betaE2 treatment. Addition of the estrogen receptor antagonist tamoxifen did not reverse the protective effect of betaE2, whereas the PI3K inhibitor LY294002 inhibited the protective effect of betaE2, suggesting that betaE2 mediates its effect through some PI3K-dependent pathway, independent of the estrogen receptor. Pull-down experiments with glutathione S-transferase fused to the N-Src homology 2 domain of p85, the regulatory subunit of PI3K, indicated that betaE2 and alphaE2, but not progesterone, identified phosphorylated insulin receptor beta-subunit (IRbeta) as a binding partner. Pretreatment with insulin receptor inhibitor, HNMPA, inhibited IRbeta activation of PI3K. Systemic administration of betaE2 significantly protected the structure and function of rat retinas against light-induced photoreceptor cell degeneration and inhibited photoreceptor apoptosis. In addition, systemic administration of betaE2 activated retinal IRbeta, but not the insulin-like growth factor receptor-1, and produced a transient increase in PI3K activity and phosphorylation of Akt in rat retinas. The results show that estrogen has retinal neuroprotective properties in vivo and in vitro and suggest that the insulin receptor/PI3K/Akt signaling pathway is involved in estrogen-mediated retinal neuroprotection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号