首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6906篇
  免费   671篇
  2023年   23篇
  2022年   52篇
  2021年   120篇
  2020年   98篇
  2019年   139篇
  2018年   166篇
  2017年   130篇
  2016年   230篇
  2015年   321篇
  2014年   309篇
  2013年   417篇
  2012年   487篇
  2011年   465篇
  2010年   303篇
  2009年   297篇
  2008年   390篇
  2007年   398篇
  2006年   375篇
  2005年   380篇
  2004年   332篇
  2003年   319篇
  2002年   317篇
  2001年   139篇
  2000年   102篇
  1999年   104篇
  1998年   87篇
  1997年   60篇
  1996年   57篇
  1995年   52篇
  1994年   47篇
  1993年   43篇
  1992年   67篇
  1991年   53篇
  1990年   56篇
  1989年   46篇
  1988年   54篇
  1987年   38篇
  1986年   48篇
  1985年   42篇
  1984年   45篇
  1983年   44篇
  1982年   37篇
  1981年   47篇
  1980年   35篇
  1979年   22篇
  1978年   23篇
  1977年   27篇
  1976年   24篇
  1974年   19篇
  1973年   24篇
排序方式: 共有7577条查询结果,搜索用时 31 毫秒
991.
Cyclists seek to maximize performance during competition, and gross efficiency is an important factor affecting performance. Gross efficiency is itself affected by pedal rate. Thus, it is important to understand factors that affect freely chosen pedal rate. Crank inertial load varies greatly during road cycling based on the selected gear ratio. Nevertheless, the possible influence of crank inertial load on freely chosen pedal rate and gross efficiency has never been investigated. This study tested the hypotheses that during cycling with sub-maximal work rates, a considerable increase in crank inertial load would cause (1) freely chosen pedal rate to increase, and as a consequence, (2) gross efficiency to decrease. Furthermore, that it would cause (3) peak crank torque to increase if a constant pedal rate was maintained. Subjects cycled on a treadmill at 150 and 250W, with low and high crank inertial load, and with preset and freely chosen pedal rate. Freely chosen pedal rate was higher at high compared with low crank inertial load. Notably, the change in crank inertial load affected the freely chosen pedal rate as much as did the 100W increase in work rate. Along with freely chosen pedal rate being higher, gross efficiency at 250W was lower during cycling with high compared with low crank inertial load. Peak crank torque was higher during cycling at 90rpm with high compared with low crank inertial load. Possibly, the subjects increased the pedal rate to compensate for the higher peak crank torque accompanying cycling with high compared with low crank inertial load.  相似文献   
992.
The light-harvesting complex LH2 of Rubrivivax gelatinosus has an oligomeric structure built from alpha-beta heterodimers containing three bacteriochlorophylls and one carotenoid each. The alpha subunit (71 residues) presents a C-terminal hydrophobic extension (residues 51-71) which is prone to attack by an endogenous protease. This extension can also be cleaved by a mild thermolysin treatment, as demonstrated by electrophoresis and by matrix-assisted laser desorption-time of flight mass spectrometry. This cleavage does not affect the pigment binding sites as shown by absorption spectroscopy. Electron microscopy was used to investigate the structures of the native and thermolysin cleaved forms of the complexes. Two-dimensional crystals of the reconstituted complexes were examined after negative staining and cryomicroscopy. Projection maps at 10 A resolution were calculated, demonstrating the nonameric ring-like organization of alpha-beta subunits. The cleaved form presents the same structural features. We conclude that the LH2 complex is structurally homologous to the Rhodopseudomonas acidophila LH2. The hydrophobic C-terminal extension does not fold back in the membrane, but lays out on the periplasmic surface of the complex.  相似文献   
993.
Rapid abiotic transformation of nitrate in an acid forest soil   总被引:14,自引:4,他引:10  
Nitrate immobilization into organic matter isthought to require catalysis by the enzymes ofsoil microorganisms. However, recent studiessuggest that nitrate added to soil isimmobilized rapidly and this process mayinclude abiotic pathways. We amended living andsterilized soil with 15N-labeled nitrateand nitrite to investigate biotic and abioticimmobilization. We report rapid transformationof nitrate in incubations of the O layer offorest soils that have been sterilized toprevent microbial activity and to denaturemicrobial enzymes. Approximately 30, 40, and60% of the 15N-labeled nitrate added tolive, irradiated, or autoclaved organic horizonsoil disappeared from the extractableinorganic-N pool in less than 15 minutes. About5% or less of the nitrate was recovered asinsoluble organic N in live and sterilizedsoil, and the remainder was determined to besoluble organic N. Added 15N-nitrite,however, was either lost to gaseous N orincorporated into an insoluble organic N formin both live and sterile organic soils. Hence,the fate and pathway of apparent abioticnitrate immobilization differs from thebetter-known mechanisms of nitrite reactionswith soil organic matter. Nitrate and nitriteadded to live A-horizon soil was largelyrecovered in the form added, suggesting thatrapid conversion of nitrate to solubleorganic-N may be limited to C-rich organichorizons. The processes by which this temperateforest soil transforms added nitrate to solubleorganic-N cannot be explained by establishedmechanisms, but appears to be due to abioticprocesses in the organic horizon.  相似文献   
994.
995.
The antimicrobial effect obtained upon combining the prokaryotic antimicrobial peptides (AMPs; more commonly referred to as bacteriocins) pediocin PA-1, sakacin P, and curvacin A (all produced by lactic acid bacteria [LAB]) with the eukaryotic AMP pleurocidin (from fish) has been investigated. The three LAB AMPs alone were active against gram-positive Listeria ivanovii bacteria at nanomolar concentrations, whereas they were inactive against gram-negative Escherichia coli bacteria. Pleurocidin alone was active against both of these types of bacteria at micromolar concentrations. Little if any synergy between the LAB AMPs and pleurocidin against the gram-positive L. ivanovii strain was obtained. In contrast, the LAB AMPs and pleurocidin acted highly synergistically against the gram-negative E. coli strain. Nanomolar concentrations of LAB AMPs increased the growth inhibitory potency of pleurocidin by about fourfold. When micromolar concentrations of LAB AMPs were combined with 2 μg of pleurocidin/ml, 100% growth inhibition was attained, whereas pleurocidin alone at a concentration of 2 μg/ml gave no growth inhibition. Most noteworthy, when high concentrations (128 μg/ml) of pleurocidin in the absence of LAB AMPs were used over a long period of incubation (1 week), some growth of E. coli was observed, whereas 16 μg of pleurocidin/ml completely abolished growth in the presence of 64 to 128 ng of LAB AMPs/ml over the same period of time. The results clearly demonstrate that combining eukaryotic and prokaryotic AMPs can greatly increase the specific activity and broaden the target-cell range of these peptides.  相似文献   
996.
Plants react to pathogen attack through a variety of active and passive defense mechanisms primarily related to the metabolism of phenolic compounds and oxidative metabolism. Thus the activation of defensive reactions is associated with the increased expression of a great number of genes that encode enzymes involved in the biosynthetic pathway of phenolic compounds. Similarly, the activation of oxidative metabolism precedes the expression of defense genes during plant-pathogen interactions, so both metabolic processes must exert a major function in directing the mechanisms to resist disease. Similarly, it has been suggested that certain fungicides used to mitigate or prevent pathogen attack may be involved in activating certain defensive responses of plants. However, the fact that such substances may influence the key steps of the phenolic and oxidative processes has scarcely been studied. Our work confirms the results proposed by other authors, who suggest that certain wide-spectrum fungicides, in addition to their antibiotic action against pathogens, may be involved in the activation of some defensive responses of plants.  相似文献   
997.
Given the essential role played by phenol metabolism in many resistance responses to different types of stress, the aim of the present work was to determine how different application rates of calcium may influence this metabolic process. Increased calcium in the nutrient solution in which tobacco plants were grown considerably reduced the foliar concentration of phenolic compounds. Calcium clearly exerted a positive influence on the activities of enzymes (phenylalanine ammonia-lyase, polyphenol oxidase and peroxidase) involved in the metabolism of the phenolics. High dosages of calcium (5 mM) promoted more oxidation than synthesis of these compounds, thus explaining the lower concentration of the phenolics.  相似文献   
998.
Two morphologically similar strains of hyphomycetous fungi, MF5785 and MF5638, produced potent indole diterpene antagonists of the calcium-gated potassium ion channel, Maxi-K, and a diterpene blocker (nalanthalide) of the voltage-gated potassium channel, Kv 1.3, respectively. The two strains were tentatively identified in the literature as Nalanthamala species. Analyses of their secondary metabolite profiles by HPLC and mass spectroscopy demonstrated that both produced a series of indole diterpenes, of which at least one was produced by both strains. Another strain, Chaunopycnis alba (MF6799), that produced the diterpene, nalanthalide, also produced indole diterpene metabolites. Morphological comparisons and phylogenetic studies based on 28S and ITS rDNA sequences indicated that MF5785 and MF5368, and another soil-derived strain GB6597, belonged to a monophyletic clade of the Clavicipitaceae that included the anamorph Chaunopycnis alba and several Cordyceps and Tolypocladium species. A new species of Chaunopycnis is therefore proposed to accommodate MF5785, MF5368, and GB6597. The possible synonymy of Albophoma yamanashiensis with C. alba also is discussed. Within the Clavicipitaceae, indole diterpenoid compounds have only been known from the graminicolous species (subfamily Clavicipitoideae); therefore delineation of a Chaunopycnis clade has revealed a previously unrecognized lineage of indole diterpene-producing fungi among the subfamily Cordycipitoideae.  相似文献   
999.
Two potential mechanisms, reduced skin blood flow (SBF) and sweating rate (SR), may be responsible for elevated intestinal temperature (T(in)) during exercise after bed rest and spaceflight. Seven men underwent 13 days of 6 degrees head-down bed rest. Pre- and post-bed rest, subjects completed supine submaximal cycle ergometry (20 min at 40% and 20 min at 65% of pre-bed rest supine peak exercise capacity) in a thermoneutral room. After bed rest, T(in) was elevated at rest (+0.31 +/- 0.12 degrees C) and at the end of exercise (+0.33 +/- 0.07 degrees C). Percent increase in SBF during exercise was less after bed rest (211 +/- 53 vs. 96 +/- 31%; P < or = 0.05), SBF/T(in) threshold was greater (37.09 +/- 0.16 vs. 37.33 +/- 0.13 degrees C; P < or = 0.05), and slope of SBF/T(in) tended to be reduced (536 +/- 184 vs. 201 +/- 46%/ degrees C; P = 0.08). SR/T(in) threshold was delayed (37.06 +/- 0.11 vs. 37.34 +/- 0.06 degrees C; P < or = 0.05), but the slope of SR/T(in) (3.45 +/- 1.22 vs. 2.58 +/- 0.71 mg x min-1 x cm-2 x degrees C-1) and total sweat loss (0.42 +/- 0.06 vs. 0.44 +/- 0.08 kg) were not changed. The higher resting and exercise T(in) and delayed onset of SBF and SR suggest a centrally mediated elevation in the thermoregulatory set point during bed rest exposure.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号