首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6047篇
  免费   548篇
  6595篇
  2023年   23篇
  2022年   52篇
  2021年   103篇
  2020年   65篇
  2019年   122篇
  2018年   128篇
  2017年   105篇
  2016年   187篇
  2015年   275篇
  2014年   277篇
  2013年   353篇
  2012年   419篇
  2011年   402篇
  2010年   280篇
  2009年   263篇
  2008年   357篇
  2007年   359篇
  2006年   334篇
  2005年   352篇
  2004年   279篇
  2003年   282篇
  2002年   294篇
  2001年   97篇
  2000年   78篇
  1999年   86篇
  1998年   79篇
  1997年   59篇
  1996年   51篇
  1995年   52篇
  1994年   41篇
  1993年   34篇
  1992年   55篇
  1991年   39篇
  1990年   36篇
  1989年   39篇
  1988年   43篇
  1987年   34篇
  1986年   33篇
  1985年   33篇
  1984年   43篇
  1983年   40篇
  1982年   33篇
  1981年   42篇
  1980年   31篇
  1979年   28篇
  1978年   21篇
  1977年   23篇
  1976年   16篇
  1975年   20篇
  1973年   26篇
排序方式: 共有6595条查询结果,搜索用时 15 毫秒
991.
992.
We propose inference procedures for general factorial designs with time-to-event endpoints. Similar to additive Aalen models, null hypotheses are formulated in terms of cumulative hazards. Deviations are measured in terms of quadratic forms in Nelson–Aalen-type integrals. Different from existing approaches, this allows to work without restrictive model assumptions as proportional hazards. In particular, crossing survival or hazard curves can be detected without a significant loss of power. For a distribution-free application of the method, a permutation strategy is suggested. The resulting procedures' asymptotic validity is proven and small sample performances are analyzed in extensive simulations. The analysis of a data set on asthma illustrates the applicability.  相似文献   
993.
The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U) from the secretome of human endothelial cells. The angiogenic effect of the endothelial secretome was partially reduced after incubation with alkaline phosphatase and abolished in the presence of suramin. In one fraction, purified to homogeneity by reversed phase and affinity chromatography, Up4U was identified by MALDI-LIFT-fragment-mass-spectrometry, enzymatic cleavage analysis and retention-time comparison. Beside a strong angiogenic effect on the yolk sac membrane and the developing rat embryo itself, Up4U increased the proliferation rate of endothelial cells and, in the presence of PDGF, of vascular smooth muscle cells. Up4U stimulated the migration rate of endothelial cells via P2Y2-receptors, increased the ability of endothelial cells to form capillary-like tubes and acts as a potent inducer of sprouting angiogenesis originating from gel-embedded EC spheroids. Endothelial cells released Up4U after stimulation with shear stress. Mean total plasma Up4U concentrations of healthy subjects (N = 6) were sufficient to induce angiogenic and proliferative effects (1.34±0.26 nmol L-1). In conclusion, Up4U is a novel strong human endothelium-derived angiogenic factor.  相似文献   
994.
The mutation of R273→H in the p53 core domain (p53-CD) is one of the most common mutations found in human cancers. Although the 273H p53-CD retains the wild-type conformation and stability, it lacks sequence-specific DNA binding, a transactivation function and growth suppression. However, mutating T284→R in the 273H p53-CD restores the DNA binding affinity, and transactivation and tumour suppressor functions. Since X-ray/NMR structures of DNA-free or DNA-bound mutant p53-CD molecules are unavailable, the factors governing the loss and rescue of sequence-specific DNA binding in the 273H and 273H+284R p53-CD, respectively, are unclear. Hence, we have carried out molecular dynamics (MD) simulations of the wild-type, single mutant and double mutant p53-CD, free and DNA bound, in the presence of explicit water molecules. Based on the MD structures, the DNA-binding free energy of each p53 molecule has been computed and decomposed into component energies and contributions from the interface residues. The wild-type and mutant p53-CD MD structures were found to be consistent with the antibody-binding, X-ray and NMR data. The predicted DNA binding affinity and specificity of both mutant p53-CDs were also in accord with experimental data. The non-detectable DNA binding of the 273H p53-CD is due mainly to the disruption of a hydrogen-bonding network involving R273, D281 and R280, leading to a loss of major groove binding by R280 and K120. The restoration of DNA binding affinity and specificity of the 273H+284R p53-CD is due mainly to the introduction of another DNA-binding site at position 284, leading to a recovery of major groove binding by R280 and K120. The important role of water molecules and the DNA major groove conformation as well as implications for structure-based linker rescue of the 273H p53-CD DNA-binding affinity are discussed.  相似文献   
995.
Invasive diseases present an increasing problem worldwide; however, genomic techniques are now available to investigate the timing and geographical origin of such introductions. We employed genomic techniques to demonstrate that the bacterial pathogen causing Pierce's disease of grapevine (PD) is not native to the US as previously assumed, but descended from a single genotype introduced from Central America. PD has posed a serious threat to the US wine industry ever since its first outbreak in Anaheim, California in the 1880s and continues to inhibit grape cultivation in a large area of the country. It is caused by infection of xylem vessels by the bacterium Xylella fastidiosa subsp. fastidiosa, a genetically distinct subspecies at least 15,000 years old. We present five independent kinds of evidence that strongly support our invasion hypothesis: 1) a genome-wide lack of genetic variability in X. fastidiosa subsp. fastidiosa found in the US, consistent with a recent common ancestor; 2) evidence for historical allopatry of the North American subspecies X. fastidiosa subsp. multiplex and X. fastidiosa subsp. fastidiosa; 3) evidence that X. fastidiosa subsp. fastidiosa evolved in a more tropical climate than X. fastidiosa subsp. multiplex; 4) much greater genetic variability in the proposed source population in Central America, variation within which the US genotypes are phylogenetically nested; and 5) the circumstantial evidence of importation of known hosts (coffee plants) from Central America directly into southern California just prior to the first known outbreak of the disease. The lack of genetic variation in X. fastidiosa subsp. fastidiosa in the US suggests that preventing additional introductions is important since new genetic variation may undermine PD control measures, or may lead to infection of other crop plants through the creation of novel genotypes via inter-subspecific recombination. In general, geographically mixing of previously isolated subspecies should be avoided.  相似文献   
996.
Agriculture is now facing the ‘perfect storm’ of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic‐assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change.  相似文献   
997.
The surface activity and interaction with lipid monolayers and bilayers of the antitumour ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (edelfosine) have been studied. Edelfosine is a surface-active soluble amphiphile, with critical micellar concentrations at 3.5 microM and 19 microM in water. When the air-water interface is occupied by a phospholipid, edelfosine becomes inserted in the phospholipid monolayer, increasing surface pressure. This increase is dose-dependent, and reaches a plateau at ca. 2 microM edelfosine bulk concentration. The ether lipid can become inserted in phospholipid monolayers with initial surface pressures of up to 33 mN/m, which ensures its capacity to become inserted into cell membranes. Upon interaction with phospholipid vesicles, edelfosine exhibits a weak detergent activity, causing release of vesicle contents to a low extent (<5%), and a small proportion of lipid solubilization. The weak detergent properties of edelfosine can be related to its very low critical micellar concentrations. Its high affinity for lipid monolayers combined with low lytic properties support the use of edelfosine as a clinical drug. The surface-active properties of edelfosine are similar to those of other "single-chain" lipids, e.g. lysophosphatidylcholine, palmitoylcarnitine, or N-acetylsphingosine.  相似文献   
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号