首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4606篇
  免费   420篇
  5026篇
  2023年   18篇
  2022年   34篇
  2021年   76篇
  2020年   48篇
  2019年   83篇
  2018年   94篇
  2017年   72篇
  2016年   138篇
  2015年   210篇
  2014年   210篇
  2013年   264篇
  2012年   342篇
  2011年   310篇
  2010年   213篇
  2009年   211篇
  2008年   289篇
  2007年   296篇
  2006年   287篇
  2005年   288篇
  2004年   238篇
  2003年   230篇
  2002年   242篇
  2001年   53篇
  2000年   30篇
  1999年   46篇
  1998年   59篇
  1997年   39篇
  1996年   40篇
  1995年   39篇
  1994年   27篇
  1993年   25篇
  1992年   25篇
  1991年   17篇
  1990年   22篇
  1989年   21篇
  1988年   23篇
  1987年   15篇
  1986年   19篇
  1985年   20篇
  1984年   33篇
  1983年   32篇
  1982年   24篇
  1981年   36篇
  1980年   25篇
  1979年   18篇
  1978年   19篇
  1977年   20篇
  1976年   14篇
  1975年   18篇
  1973年   23篇
排序方式: 共有5026条查询结果,搜索用时 0 毫秒
81.
82.
Injected mitotic extracts induce condensation of interphase chromatin   总被引:4,自引:0,他引:4  
Although extracts from mitotic cells have been shown to induce chromosome condensation when injected into amphibian oocytes, they have not as yet been shown to induce this response in somatic interphase cells. In the experiments reported here, when mitotic extracts were injected into syncytial frog embryos, whose somatic nuclei were arrested in interphase, chromosome condensation was observed. The inability of interphase extracts, injected at similar concentrations, to induce this event demonstrates the cell cycle-specific accumulation of the factors responsible.  相似文献   
83.
We investigated the effects of Fe and Cu status of pea (Pisum sativum L.) seedlings on the regulation of the putative root plasma-membrane Fe(III)-chelate reductase that is involved in Fe(III)-chelate reduction and Fe2+ absorption in dicotyledons and nongraminaceous monocotyledons. Additionally, we investigated the ability of this reductase system to reduce Cu(II)-chelates as well as Fe(III)-chelates. Pea seedlings were grown in full nutrient solutions under control, -Fe, and -Cu conditions for up to 18 d. Iron(III) and Cu(II) reductase activity was visualized by placing roots in an agarose gel containing either Fe(III)-EDTA and the Fe(II) chelate, Na2bathophenanthrolinedisulfonic acid (BPDS), for Fe(III) reduction, or CuSO4, Na3citrate, and Na2-2,9-dimethyl-4,7-diphenyl-1, 10-phenanthrolinedisulfonic acid (BCDS) for Cu(II) reduction. Rates of root Fe(III) and Cu(II) reduction were determined via spectrophotometric assay of the Fe(II)-BPDS or the Cu(I)-BCDS chromophore. Reductase activity was induced or stimulated by either Fe deficiency or Cu depletion of the seedlings. Roots from both Fe-deficient and Cu-depleted plants were able to reduce exogenous Cu(II)-chelate as well as Fe(III)-chelate. When this reductase was induced by Fe deficiency, the accumulation of a number of mineral cations (i.e., Cu, Mn, Fe, Mg, and K) in leaves of pea seedlings was significantly increased. We suggest that, in addition to playing a critical role in Fe absorption, this plasma-membrane reductase system also plays a more general role in the regulation of cation absorption by root cells, possibly via the reduction of critical sulfhydryl groups in transport proteins involved in divalent-cation transport (divalent-cation channels?) across the root-cell plasmalemma.  相似文献   
84.
85.
Intracellular phospholipase A(2) (PLA(2)) is responsible for releasing arachidonic acid from cellular phospholipids, and is thought to be the first step in eicosanoid biosynthesis. Intracellular PLA(2)s have been characterized in fat body and hemocytes from tobacco hornworms, Manduca sexta. Here we show that bacterial challenge stimulated increased PLA(2) activity in isolated hemocyte preparations, relative to control hemocyte preparations that were challenged with water. The increased activity was detected as early as 15 s post-challenge and lasted for at least 1 h. The increased activity depended on a minimum bacterial challenge dose, and was inhibited in reactions conducted in the presence of oleyoxyethylphosphorylcholine, a site-specific PLA(2) inhibitor. In independent experiments with serum prepared from whole hemolymph, we found no PLA(2) activity was secreted into serum during the first 24 h following bacterial infection. We infer that a hemocytic intracellular PLA(2) activity is increased immediately an infection is detected. The significance of this enzyme lies in its role in launching the biosynthesis of eicosanoids, which mediate cellular immune reactions to bacterial infection.  相似文献   
86.
Synthesis of acetylcholine (ACh) by non‐neuronal cells is now well established and plays diverse physiologic roles. In neurons, the Na+‐dependent, high affinity choline transporter (CHT1) is absolutely required for ACh synthesis. In contrast, some non‐neuronal cells synthesize ACh in the absence of CHT1 indicating a fundamental difference in ACh synthesis compared to neurons. The aim of this study was to identify choline transporters, other than CHT1, that play a role in non‐neuronal ACh synthesis. ACh synthesis was studied in lung and colon cancer cell lines focusing on the choline transporter‐like proteins, a five gene family choline‐transporter like protein (CTL)1–5. Supporting a role for CTLs in choline transport in lung cancer cells, choline transport was Na+‐independent and CTL1–5 were expressed in all cells examined. CTL1, 2, and 5 were expressed at highest levels and knockdown of CTL1, 2, and 5 decreased choline transport in H82 lung cancer cells. Knockdowns of CTL1, 2, 3, and 5 had no effect on ACh synthesis in H82 cells. In contrast, knockdown of CTL4 significantly decreased ACh secretion by both lung and colon cancer cells. Conversely, increasing expression of CTL4 increased ACh secretion. These results indicate that CTL4 mediates ACh synthesis in non‐neuronal cell lines and presents a mechanism to target non‐neuronal ACh synthesis without affecting neuronal ACh synthesis.  相似文献   
87.
We describe a new class of reagents for identifying substrates, adaptors, and regulators of HECT and RING E3s. UBAITs (Ub iquitin‐A ctivated I nteraction T raps) are E3‐ubiquitin fusion proteins and, in an E1‐ and E2‐dependent manner, the C‐terminal ubiquitin moiety forms an amide linkage to proteins that interact with the E3, enabling covalent co‐purification of the E3 with partner proteins. We designed UBAITs for both HECT (Rsp5, Itch) and RING (Psh1, RNF126, RNF168) E3s. For HECT E3s, trapping of interacting proteins occurred in vitro either through an E3 thioester‐linked lariat intermediate or through an E2 thioester intermediate, and both WT and active‐site mutant UBAITs trapped known interacting proteins in yeast and human cells. Yeast Psh1 and human RNF126 and RNF168 UBAITs also trapped known interacting proteins when expressed in cells. Human RNF168 is a key mediator of ubiquitin signaling that promotes DNA double‐strand break repair. Using the RNF168 UBAIT, we identify H2AZ—a histone protein involved in DNA repair—as a new target of this E3 ligase. These results demonstrate that UBAITs represent powerful tools for profiling a wide range of ubiquitin ligases.  相似文献   
88.
The regulation of intracellular Ca(2+) levels is achieved in part by high-capacity vacuolar Ca(2+)/H(+) antiporters. An N-terminal regulatory region (NRR) on the Arabidopsis Ca(2+)/H(+) antiporter CAX1 (cation exchanger 1) has been shown previously to regulate Ca(2+) transport by a mechanism of N-terminal auto-inhibition. Here, we examine the regulation of other CAX transporters, both within Arabidopsis and from another plant, mung bean (Vigna radiata), to ascertain if this mechanism is commonly used among Ca(2+)/H(+) antiporters. Biochemical analysis of mung bean VCAX1 expressed in yeast (Saccharomyces cerevisiae) showed that N-terminal truncated VCAX1 had approximately 70% greater antiport activity compared with full-length VCAX1. A synthetic peptide corresponding to the NRR of CAX1, which can strongly inhibit Ca(2+) transport by CAX1, could not dramatically inhibit Ca(2+) transport by truncated VCAX1. The N terminus of Arabidopsis CAX3 was also shown to contain an NRR. Additions of either the CAX3 or VCAX1 regulatory regions to the N terminus of an N-terminal truncated CAX1 failed to inhibit CAX1 activity. When fused to N-terminal truncated CAX1, both the CAX3 and VCAX1 regulatory regions could only auto-inhibit CAX1 after mutagenesis of specific amino acids within this NRR region. These findings demonstrate that N-terminal regulation is present in other plant CAX transporters, and suggest distinct regulatory features among these transporters.  相似文献   
89.
Stress granules are large messenger ribonucleoprotein (mRNP) aggregates composed of translation initiation factors and mRNAs that appear when the cell encounters various stressors. Current dogma indicates that stress granules function as inert storage depots for translationally silenced mRNPs until the cell signals for renewed translation and stress granule disassembly. We used RasGAP SH3-binding protein (G3BP) overexpression to induce stress granules and study their assembly process and signaling to the translation apparatus. We found that assembly of large G3BP-induced stress granules, but not small granules, precedes phosphorylation of eIF2α. Using mouse embryonic fibroblasts depleted for individual eukaryotic initiation factor 2α (eIF2α) kinases, we identified protein kinase R as the principal kinase that mediates eIF2α phosphorylation by large G3BP-induced granules. These data indicate that increasing stress granule size is associated with a threshold or switch that must be triggered in order for eIF2α phosphorylation and subsequent translational repression to occur. Furthermore, these data suggest that stress granules are active in signaling to the translational machinery and may be important regulators of the innate immune response.  相似文献   
90.
Highly multiplexed single‐cell functional proteomics has emerged as one of the next‐generation toolkits for a deeper understanding of functional heterogeneity in cell. Different from the conventional population‐based bulk and single‐cell RNA‐Seq assays, the microchip‐based proteomics at the single‐cell resolution enables a unique identification of highly polyfunctional cell subsets that co‐secrete many proteins from live single cells and most importantly correlate with patient response to a therapy. The 32‐plex IsoCode chip technology has defined a polyfunctional strength index (PSI) of pre‐infusion anti‐CD19 chimeric antigen receptor (CAR)‐T products, that is significantly associated with patient response to the CAR‐T cell therapy. To complement the clinical relevance of the PSI, a comprehensive visualization toolkit of 3D uniform manifold approximation and projection (UMAP) and t‐distributed stochastic neighbor embedding (t‐SNE) in a proteomic analysis pipeline is developed, providing more advanced analytical algorithms for more intuitive data visualizations. The UMAP and t‐SNE of anti‐CD19 CAR‐T products reveal distinct cytokine profiles between nonresponders and responders and demonstrate a marked upregulation of antitumor‐associated cytokine signatures in CAR‐T cells from responding patients. Using this powerful while user‐friendly analytical tool, the multi‐dimensional single‐cell data can be dissected from complex immune responses and uncover underlying mechanisms, which can promote correlative biomarker discovery, improved bioprocessing, and personalized treatment development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号