首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   559篇
  免费   39篇
  国内免费   2篇
  2021年   11篇
  2020年   7篇
  2018年   9篇
  2017年   9篇
  2016年   13篇
  2015年   21篇
  2014年   17篇
  2013年   24篇
  2012年   34篇
  2011年   38篇
  2010年   26篇
  2009年   20篇
  2008年   26篇
  2007年   34篇
  2006年   27篇
  2005年   29篇
  2004年   24篇
  2003年   16篇
  2002年   21篇
  2001年   10篇
  2000年   17篇
  1999年   10篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   14篇
  1991年   10篇
  1990年   6篇
  1989年   10篇
  1988年   3篇
  1987年   7篇
  1985年   6篇
  1984年   3篇
  1983年   4篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1971年   5篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
  1966年   7篇
  1965年   2篇
  1958年   4篇
  1939年   2篇
排序方式: 共有600条查询结果,搜索用时 171 毫秒
51.
Nogo-A is a well-known myelin-enriched inhibitory protein for axonal growth and regeneration in the central nervous system (CNS). Besides oligodendrocytes, our previous data revealed that Nogo-A is also expressed in subpopulations of neurons including retinal ganglion cells, in which it can have a positive role in the neuronal growth response after injury, through an unclear mechanism. In the present study, we analyzed the opposite roles of glial versus neuronal Nogo-A in the injured visual system. To this aim, we created oligodendrocyte (Cnp-Cre+/−xRtn4/Nogo-Aflox/flox) and neuron-specific (Thy1-Cretg+xRtn4flox/flox) conditional Nogo-A knock-out (KO) mouse lines. Following complete intraorbital optic nerve crush, both spontaneous and inflammation-mediated axonal outgrowth was increased in the optic nerves of the glia-specific Nogo-A KO mice. In contrast, neuron-specific deletion of Nogo-A in a KO mouse line or after acute gene recombination in retinal ganglion cells mediated by adeno-associated virus serotype 2.Cre virus injection in Rtn4flox/flox animals decreased axon sprouting in the injured optic nerve. These results therefore show that selective ablation of Nogo-A in oligodendrocytes and myelin in the optic nerve is more effective at enhancing regrowth of injured axons than what has previously been observed in conventional, complete Nogo-A KO mice. Our data also suggest that neuronal Nogo-A in retinal ganglion cells could participate in enhancing axonal sprouting, possibly by cis-interaction with Nogo receptors at the cell membrane that may counteract trans-Nogo-A signaling. We propose that inactivating Nogo-A in glia while preserving neuronal Nogo-A expression may be a successful strategy to promote axonal regeneration in the CNS.In the adult mammalian central nervous system (CNS), axons have a very limited capacity to regenerate after traumatic injury. This lack of axonal regeneration is thought to be mainly due to the presence of growth-inhibiting molecules in the injured CNS environment1, 2 and due to the low intrinsic growth capacity of mature neurons.3Nogo-A is a well-studied inhibitory protein for axonal growth, plasticity and regeneration after CNS injury.4, 5 Nogo-A is predominantly expressed in oligodendrocytes in the adult CNS, where it is thought to stabilize the neuronal circuits in healthy conditions and to inhibit neurite growth and plasticity after lesion.2 Neutralizing Nogo-A by function-blocking antibodies or genetic knockout (KO) has been shown to improve axonal sprouting and regeneration in the injured spinal cord and brain.6, 7, 8, 9, 10, 11In addition to oligodendrocytes and myelin, Nogo-A is expressed in growing and immature neurons, as well as in some adult neurons.12, 13 Neurons express Nogo-A receptors such as the Nogo-66 receptor 1 (NgR1)14 and the Nogo-A-Δ20-specific sphingosine 1-phosphate receptor 2 (S1PR2).15 They can co-express them along with Nogo-A,13 an observation that raises the possibility of cis-interactions between the ligand and its receptors within or at the cell surface of the same cell. This mechanism has previously been described for axonal guidance molecules such as Ephrins and Semaphorins, and could have a major role in the neuronal response to extracellular growth inhibitors during development.16, 17In the adult CNS, the expression of neuronal Nogo-A remains elevated mainly in plastic regions such as in the hippocampus, olfactory bulb or neocortex, and in the dorsal root ganglia.12 Nogo-A and NgR1 were shown to regulate synaptic plasticity, for example, long-term potentiation in the hippocampus and in the sensory-motor cortex,18, 19, 20, 21, 22 whereas the effects of neuronal Nogo-A after injury are not yet well understood. During development, neuronal Nogo-A influences neuronal migration,23, 24 survival,25, 26 cell spreading and neurite growth.27, 28 In injured adult retinal ganglion cells (RGCs), silencing neuronal Nogo-A resulted in a marked reduction of regenerative sprouting and decreased expression of growth-associated molecules.29 Furthermore, in the optic nerve, axonal regeneration was not improved in conventional Nogo-A KO animals, in which both glial and neuronal Nogo-A were deleted.29 The present study therefore aimed to investigate whether glial and neuronal Nogo-A differently influence axonal growth in vivo using cell type-specific Nogo-A KO mouse lines and adeno-associated virus (AAV)-mediated recombination of the Nogo-A gene in neurons. The results show that significantly more axons grew through the lesion site in the oligodendrocyte-specific Nogo-A KO mice. In contrast, neuron-specific ablation of Nogo-A in RGCs reduced the number of regenerating axons after optic nerve crush injury (ONC). In summary, we show that inactivating Nogo-A specifically in oligodendrocytes appears to be the most successful strategy to promote axonal regeneration in the adult optic nerve.  相似文献   
52.
The detrimental effects of genetic erosion on small isolated populations are widely recognized contrary to their interactions with environmental changes. The ability of genotypes to plastically respond to variability is probably essential for the persistence of these populations. Genetic erosion impact may be exacerbated if inbreeding affects plastic responses or if their maintenance were at higher phenotypic costs. To understand the interplay 'genetic erosion-fitness-phenotypic plasticity', we experimentally compared, in different environments, the larval performances and plastic responses to predation of European tree frogs (Hyla arborea) from isolated and connected populations. Tadpoles from isolated populations were less performant, but the traits affected were environmental dependant. Heterosis observed in crosses between isolated populations allowed attributing their low fitness to inbreeding. Phenotypic plasticity can be maintained in the face of genetic erosion as inducible defences in response to predator were identical in all populations. However, the higher survival and developmental costs for isolated populations in harsh conditions may lead to an additional fitness loss for isolated populations.  相似文献   
53.
Vaccinomics aims to integrate variability information from multiple levels of the biological hierarchy from genome to proteome to metabolome, and ways in which these biological parts interact with each other and the environment. Vaccinomics holds significant promise as a new public health tool in designing safer and more effective vaccines for both developed and developing countries. Vaccinomics tests that are envisioned to be used in tandem with vaccine-based health interventions could permit an informed forecast of individual and subpopulation variations in immune responses to vaccines, reduce adverse effects, and contribute to a foundation for rational and directed use of vaccines. A proactive, multidisciplinary engagement with vaccinomics is now timely and much needed in order to develop regulations that best ensure the protection of the public and promote the transition of vaccinomics innovations from discovery to real-life public health applications. This article examines and compares the regulatory oversight of vaccinomics tests in Canada, the United States, and Europe. Recent trends in these jurisdictions suggest that regulatory agencies view personalized genomics/omics medicine, such as vaccinomics, as a desirable goal. At the same time, proposals to increase oversight could impact progress in the field and affect the availability of vaccinomics tests in public health practice and the diagnostic test market. The comparative analysis of vaccinomics in three jurisdictions presented in this article highlights both the convergence and divergence of regulatory oversight. In a rapidly emerging field such as vaccinomics that is pivotal for global public health, achieving better harmonization of policies may be an advantageous target, while ensuring that symmetry exists between the goals of public safety and promoting public health innovation. We suggest it is now timely to proactively initiate a constructive dialogue among all stakeholders (publics, policymakers, researchers, private sector, governments) to foster the development of appropriately targeted regulatory policies in this field.  相似文献   
54.

Background

Speciation corresponds to the progressive establishment of reproductive barriers between groups of individuals derived from an ancestral stock. Since Darwin did not believe that reproductive barriers could be selected for, he proposed that most events of speciation would occur through a process of separation and divergence, and this point of view is still shared by most evolutionary biologists today.

Results

I do, however, contend that, if so much speciation occurs, the most likely explanation is that there must be conditions where reproductive barriers can be directly selected for. In other words, situations where it is advantageous for individuals to reproduce preferentially within a small group and reduce their breeding with the rest of the ancestral population. This leads me to propose a model whereby new species arise not by populations splitting into separate branches, but by small inbreeding groups "budding" from an ancestral stock. This would be driven by several advantages of inbreeding, and mainly by advantageous recessive phenotypes, which could only be retained in the context of inbreeding. Reproductive barriers would thus not arise as secondary consequences of divergent evolution in populations isolated from one another, but under the direct selective pressure of ancestral stocks. Many documented cases of speciation in natural populations appear to fit the model proposed, with more speciation occurring in populations with high inbreeding coefficients, and many recessive characters identified as central to the phenomenon of speciation, with these recessive mutations expected to be surrounded by patterns of limited genomic diversity.

Conclusions

Whilst adaptive evolution would correspond to gains of function that would, most of the time, be dominant, this type of speciation by budding would thus be driven by mutations resulting in the advantageous loss of certain functions since recessive mutations very often correspond to the inactivation of a gene. A very important further advantage of inbreeding is that it reduces the accumulation of recessive mutations in genomes. A consequence of the model proposed is that the existence of species would correspond to a metastable equilibrium between inbreeding and outbreeding, with excessive inbreeding promoting speciation, and excessive outbreeding resulting in irreversible accumulation of recessive mutations that could ultimately only lead to extinction.

Reviewer names

Eugene V. Koonin, Patrick Nosil (nominated by Dr Jerzy Jurka), Pierre Pontarotti  相似文献   
55.
Survival and some physiological responses to freezing were investigated in three European water frogs (Rana lessonae, Rana ridibunda, and their hybridogen Rana esculenta). The three species exhibited different survival times during freezing (from 10 h for R. lessonae to 20 h for R. ridibunda). The time courses of percent water frozen were similar; however, because of the huge differences in body mass among species (from 10 g for Rana lessonae to nearly 100 g for Rana ridibunda), the ice mass accumulation rate varied markedly (from 0.75 +/- 0.12 to 1.43 +/- 0.11 g ice/h, respectively) and was lowest in the terrestrial hibernator Rana lessonae. The hybrid Rana esculenta exhibited an intermediate response between the two parental species; furthermore, within-species correlation existed between body mass and ice mass accumulation rates, suggesting the occurrence of subpopulations in this species (0.84 +/- 0.08 g ice/h for small R. esculenta and 1.78 +/- 0.09 g ice/h for large ones). Biochemical analyses showed accumulation of blood glucose and lactate, liver glucose (originating from glycogen), and liver alanine in Rana lessonae and Rana esculenta but not in Rana ridibunda in response to freezing. The variation of freeze tolerance between these three closely related species could bring understanding to the physiological processes involved in the evolution of freeze tolerance in vertebrates.  相似文献   
56.
57.
The thermal range for viability is quite variable among Drosophila species and it has long been known that these variations are correlated with geographic distribution: temperate species are on average more cold tolerant but more heat sensitive than tropical species. At both ends of their viability range, sterile males have been observed in all species investigated so far. This symmetrical phenomenon restricts the temperature limits within which permanent cultures can be kept in the laboratory. Thermal heat sterility thresholds are very variable across species from 23 degrees C in heat sensitive species up to 31 degrees C in heat tolerant species. In Drosophila melanogaster, genetic variations are observed among geographic populations. Tropical populations are more tolerant to heat induced sterility and recover more rapidly than temperate ones. A genetic analysis revealed that about 50% of the difference observed between natural populations was due to the Y chromosome. Natural populations have not reached a selection limit, however: thermal tolerance was still increased by keeping strains at a high temperature, close to the sterility threshold. On the low temperature side, a symmetrical reverse phenomenon seems to exist: temperate populations are more tolerant to cold than tropical ones. Compared to Mammals, drosophilids exhibit two major differences: first, male sterility occurs not only at high temperature, but also at a low temperature; second, sterility thresholds are not evolutionarily constrained, but highly variable. Altogether, significant and sometimes major genetic variations have been observed between species, between geographic races of the same species, and even between strains kept in the laboratory under different thermal regimes. In each case, it is easily argued that the observed variations correspond to adaptations to climatic conditions, and that male sterility is a significant component of fitness and a target of natural selection.  相似文献   
58.
59.
The protective role of reactive oxygen scavengers against photodamage was studied in isolated photosystem (PS) I submembrane fractions illuminated (2000 microE x m(-2) x s(-1)) for various periods at 4 degrees C. The photochemical activity of the submembrane fractions measured as P700 photooxidation was significantly protected in the presence of histidine or n-propyl gallate. Chlorophyll photobleaching resulting in a decrease of absorbance and fluorescence, and a blue-shift of both absorbance and fluorescence maximum in the red region, was also greatly delayed in the presence of these scavengers. Western blot analysis revealed the light harvesting antenna complexes of PSI, Lhca2 and Lhca1, were more susceptible to strong light when compared to Lhca3 and Lhca4. The reaction-center proteins PsaB, PsaC, and PsaE were most sensitive to strong illumination while other polypeptides were less affected. Addition of histidine or n-propyl gallate lead to significant protection of reaction-center proteins as well as Lhca against strong illumination. Circular dichroism (CD) spectra revealed that the alpha-helix content decreased with increasing period of light exposure, whereas beta-strands, turns, and unordered structure increased. This unfolding was prevented with the addition of histidine or n-propyl gallate even after 10 h of strong illumination. Catalase or superoxide dismutase could not minimize the alteration of PSI photochemical activity and structure due to photodamage. The specific action of histidine and n-propyl gallate indicates that 1O2 was the main form of reactive oxygen species responsible for strong light-induced damage in PSI submembrane fractions.  相似文献   
60.
Joly D  Korol A  Nevo E 《Genetica》2004,120(1-3):233-244
Numerous reports were devoted to the variation of sperm length in relation to sperm competition amongst species. However, studies on intraspecific variations of sperm size are very scarce and the number of sperm measured, very limited. This paper investigates within-individual, between-individual and between-population variation of sperm length in the two cosmopolitan species, D. simulans and D. melanogaster. Sperm length distributions are completely discriminated against with these two species, with the mean values equal to 1.121 +/- 0.002 and 1.989 +/- 0.008 mm, respectively. Results of intraspecific variation show a contrasting pattern between the two species. The mode of sperm length distributions is much less variable in D. simulans than in D. melanogaster. The sperm size divergence is unaffected whenever the two species are in sympatry (tested at 'Evolution Canyon', Mount Carmel, Israel) or in allopatry, but the two species react differentially to abiotic local factors. D. melanogaster, in contrast to D. simulans, shows a clinal pattern in sperm size associated with drought. We discussed this pattern in relation to the potential role of sperm length in the ongoing process of non-random mating and incipient sympatric speciation observed in this locality in D. melanogaster.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号