首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1496篇
  免费   179篇
  1675篇
  2023年   10篇
  2022年   27篇
  2021年   44篇
  2020年   30篇
  2019年   32篇
  2018年   33篇
  2017年   41篇
  2016年   55篇
  2015年   76篇
  2014年   84篇
  2013年   114篇
  2012年   117篇
  2011年   114篇
  2010年   68篇
  2009年   57篇
  2008年   88篇
  2007年   76篇
  2006年   72篇
  2005年   67篇
  2004年   70篇
  2003年   60篇
  2002年   65篇
  2001年   16篇
  2000年   17篇
  1999年   20篇
  1998年   15篇
  1997年   17篇
  1996年   12篇
  1995年   6篇
  1993年   9篇
  1991年   8篇
  1990年   7篇
  1989年   8篇
  1988年   10篇
  1987年   8篇
  1986年   9篇
  1985年   5篇
  1984年   9篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   5篇
  1979年   5篇
  1978年   6篇
  1977年   5篇
  1976年   6篇
  1973年   5篇
  1972年   9篇
  1969年   6篇
  1966年   5篇
排序方式: 共有1675条查询结果,搜索用时 15 毫秒
61.

Background

The honey bee, Apis mellifera, is frequently used as a sentinel to monitor environmental pollution. In parallel, general weakening and unprecedented colony losses have been reported in Europe and the USA, and many factors are suspected to play a central role in these problems, including infection by pathogens, nutritional stress and pesticide poisoning. Honey bee, honey and pollen samples collected from eighteen apiaries of western France from four different landscape contexts during four different periods in 2008 and in 2009 were analyzed to evaluate the presence of pesticides and veterinary drug residues.

Methodology/Findings

A multi-residue analysis of 80 compounds was performed using a modified QuEChERS method, followed by GC-ToF and LC−MS/MS. The analysis revealed that 95.7%, 72.3% and 58.6% of the honey, honey bee and pollen samples, respectively, were contaminated by at least one compound. The frequency of detection was higher in the honey samples (n = 28) than in the pollen (n = 23) or honey bee (n = 20) samples, but the highest concentrations were found in pollen. Although most compounds were rarely found, some of the contaminants reached high concentrations that might lead to adverse effects on bee health. The three most frequent residues were the widely used fungicide carbendazim and two acaricides, amitraz and coumaphos, that are used by beekeepers to control Varroa destructor. Apiaries in rural-cultivated landscapes were more contaminated than those in other landscape contexts, but the differences were not significant. The contamination of the different matrices was shown to be higher in early spring than in all other periods.

Conclusions/Significance

Honey bees, honeys and pollens are appropriate sentinels for monitoring pesticide and veterinary drug environmental pollution. This study revealed the widespread occurrence of multiple residues in beehive matrices and suggests a potential issue with the effects of these residues alone or in combination on honey bee health.  相似文献   
62.
Jolly, C. J., Reid, J. B. and Ross, J. J. 1987. Internode length in Pisum. Action of gene lw.
Mutant K29 of Pisum sativum L. is shown to possess a recessive gene at a new locus, lw , which results in reduced internode length, delayed flowering and increased symptoms of water congestion compared with the parental cv. Torsdag. The interaction of gene lw with the internode length genes na, le, la and cry 5 is examined. Extracts from the shoots of Iw plants are shown to contain similar levels of gibberellin (GA)-like substances to comparable Lw plants, but Iw plants do not elongate to the same extent as Lw plants when treated with GA19 GA19, or GA20. The effect of gene Iw is not graft-transmissible. Unlike essentially isogenic dwarf lines possessing the GA-synthesis genes le, Ih or Is, lw plants show a relative increase in elongation similar to Torsdag in response to photoperiod extensions from sources rich in far-red light. These results suggest that gene lw probably does not reduce elongation by influencing GA-synthesis and that the response to photoperiod extensions with far-red light may depend on the level of GA.  相似文献   
63.
Eukaryotic and archaeal initiation factor 2 (e- and aIF2, respectively) are heterotrimeric proteins (alphabetagamma) supplying the small subunit of the ribosome with methionylated initiator tRNA. The gamma subunit forms the core of the heterotrimer. It resembles elongation factor EF1-A and ensures interaction with Met-tRNA(i)(Met). In the presence of the alpha subunit, which is composed of three domains, the gamma subunit expresses full tRNA binding capacity. This study reports the crystallographic structure of the intact aIF2alpha subunit from the archaeon Pyrococcus abyssi and that of a derived C-terminal fragment containing domains 2 and 3. The obtained structures are compared with those of N-terminal domains 1 and 2 of yeast and human eIF2alpha and with the recently determined NMR structure of human eIF2alpha. We show that the three-domain organization in the alpha subunit is conserved in archaea and eukarya. Domains 1 and 2 form a rigid body linked to a mobile third domain. Sequence comparisons establish that the most conserved regions in the aIF2alpha polypeptide lie at opposite sides of the protein, within domain 1 and domain 3, respectively. These two domains are known to exhibit RNA binding capacities. We propose that domain 3, which is known to glue the alpha subunit onto the gamma subunit, participates in Met-tRNA(i)(Met) binding while domain 1 recognizes either rRNA or mRNA on the ribosome. Thereby, the observed structural mobility within the e- and aIF2alpha molecules would be an integral part of the biological function of this subunit in the heterotrimeric e- and aIF2alphabetagamma factors.  相似文献   
64.
A molecular definition of the mechanism conferring bacterial multidrug resistance is clinically crucial and today methods for quantitative determination of the uptake of antimicrobial agents with single cell resolution are missing. Using the naturally occurring fluorescence of antibacterial agents after deep ultraviolet (DUV) excitation, we developed a method to non-invasively monitor the quinolones uptake in single bacteria. Our approach is based on a DUV fluorescence microscope coupled to a synchrotron beamline providing tuneable excitation from 200 to 600 nm. A full spectrum was acquired at each pixel of the image, to study the DUV excited fluorescence emitted from quinolones within single bacteria. Measuring spectra allowed us to separate the antibiotic fluorescence from the autofluorescence contribution. By performing spectroscopic analysis, the quantification of the antibiotic signal was possible. To our knowledge, this is the first time that the intracellular accumulation of a clinical antibiotic could be determined and discussed in relation with the level of drug susceptibility for a multiresistant strain. This method is especially important to follow the behavior of quinolone molecules at individual cell level, to quantify the intracellular concentration of the antibiotic and develop new strategies to combat the dissemination of MDR-bacteria. In addition, this original approach also indicates the heterogeneity of bacterial population when the same strain is under environmental stress like antibiotic attack.  相似文献   
65.
66.
Telomeres play a vital role in protecting the ends of chromosomes and preventing chromosome fusion. The failure of cancer cells to properly maintain telomeres can be an important source of the chromosome instability involved in cancer cell progression. Telomere loss results in sister chromatid fusion and prolonged breakage/fusion/bridge (B/F/B) cycles, leading to extensive DNA amplification and large deletions. These B/F/B cycles end primarily when the unstable chromosome acquires a new telomere by translocation of the ends of other chromosomes. Many of these translocations are nonreciprocal, resulting in the loss of the telomere from the donor chromosome, providing a mechanism for transfer of instability from one chromosome to another until a chromosome acquires a telomere by a mechanism other than nonreciprocal translocation. B/F/B cycles can also result in other forms of chromosome rearrangements, including double-minute chromosomes and large duplications. Thus, the loss of a single telomere can result in instability in multiple chromosomes, and generate many of the types of rearrangements commonly associated with human cancer.  相似文献   
67.
Although many G protein-coupled receptors (GPCRs) can form dimers, a possible role of this phenomenon in their activation remains elusive. A recent and exciting proposal is that a dynamic intersubunit interplay may contribute to GPCR activation. Here, we examined this possibility using dimeric metabotropic glutamate receptors (mGluRs). We first developed a system to perfectly control their subunit composition and show that mGluR dimers do not form larger oligomers. We then examined an mGluR dimer containing one subunit in which the extracellular agonist-binding domain was uncoupled from the G protein-activating transmembrane domain. Despite this uncoupling in one protomer, agonist stimulation resulted in symmetric activation of either transmembrane domain in the dimer with the same efficiency. This, plus other data, can only be explained by an intersubunit rearrangement as the activation mechanism. Although well established for other types of receptors such as tyrosine kinase and guanylate cyclase receptors, this is the first clear demonstration that such a mechanism may also apply to GPCRs.  相似文献   
68.
Human KIN17 is a 45-kDa eukaryotic DNA- and RNA-binding protein that plays an important role in nuclear metabolism and in particular in the general response to genotoxics. Its amino acids sequence contains a zinc finger motif (residues 28-50) within a 30-kDa N-terminal region conserved from yeast to human, and a 15-kDa C-terminal tandem of SH3-like subdomains (residues 268-393) only found in higher eukaryotes. Here we report the solution structure of the region 51-160 of human KIN17. We show that this fragment folds into a three-alpha-helix bundle packed against a three-stranded beta-sheet. It belongs to the winged helix (WH) family. Structural comparison with analogous WH domains reveals that KIN17 WH module presents an additional and highly conserved 3(10)-helix. Moreover, KIN17 WH helix H3 is not positively charged as in classical DNA-binding WH domains. Thus, human KIN17 region 51-160 might rather be involved in protein-protein interaction through its conserved surface centered on the 3(10)-helix.  相似文献   
69.
The phosphoglucosamine mutase (GlmM) from Escherichia coli, specifically required for the interconversion of glucosamine-6-phosphate and glucosamine-1-phosphate (an essential step in the pathway for cell-wall peptidoglycan and lipopolysaccharide biosyntheses) was purified to homogeneity and its kinetic properties were investigated. The enzyme was active in a phosphorylated form and catalysed its reaction according to a classical ping-pong bi-bi mechanism. The dephosphorylated and phosphorylated forms of GlmM could be separated by HPLC and coupled MS showed that only one phosphate was covalently linked to the active site of the enzyme. The site of phosphorylation was clearly identified as Ser102 in the 445-amino acid polypeptide. GlmM was also capable of catalysing the interconversion of glucose-1-phosphate and glucose-6-phosphate isomers, although at a much lower (1400-fold) rate. Interestingly, the mutational change of the Ser100 to a threonine residue resulted in a 20-fold increase of the nonspecific phosphoglucomutase activity of GlmM, suggesting that the presence of either a serine or a threonine at this position in the consensus sequence of hexosephosphate mutases could be one of the factors that determines the specificity of these enzymes for either sugar-phosphate or amino sugar-phosphate substrates.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号