首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   724篇
  免费   69篇
  国内免费   1篇
  794篇
  2021年   15篇
  2020年   13篇
  2019年   7篇
  2018年   14篇
  2017年   10篇
  2016年   16篇
  2015年   20篇
  2014年   32篇
  2013年   41篇
  2012年   34篇
  2011年   40篇
  2010年   25篇
  2009年   25篇
  2008年   28篇
  2007年   42篇
  2006年   25篇
  2005年   37篇
  2004年   26篇
  2003年   24篇
  2002年   19篇
  2001年   26篇
  2000年   25篇
  1999年   14篇
  1998年   8篇
  1997年   10篇
  1996年   9篇
  1995年   8篇
  1994年   4篇
  1993年   12篇
  1991年   7篇
  1990年   11篇
  1989年   9篇
  1988年   10篇
  1987年   9篇
  1986年   9篇
  1985年   5篇
  1984年   8篇
  1983年   7篇
  1982年   9篇
  1981年   4篇
  1980年   7篇
  1979年   6篇
  1978年   7篇
  1977年   6篇
  1976年   9篇
  1974年   5篇
  1973年   4篇
  1972年   10篇
  1969年   5篇
  1966年   5篇
排序方式: 共有794条查询结果,搜索用时 0 毫秒
91.
Liver and intestinal cytosol contain abundant levels of long chain fatty acyl-CoA binding proteins such as liver fatty acid binding protein (L-FABP) and acyl-CoA binding protein (ACBP). However, the relative function and specificity of these proteins in microsomal utilization of long chain fatty acyl-CoAs (LCFA-CoAs) for sequential transacylation of glycerol-3-phosphate to form phosphatidic acid is not known. The results showed for the first time that L-FABP and ACBP both stimulated microsomal incorporation of the monounsaturated oleoyl-CoA and polyunsaturated arachidonoyl-CoA 8–10-fold and 2–3-fold, respectively. In contrast, these proteins inhibited microsomal utilization of the saturated palmitoyl-CoA by 69% and 62%, respectively. These similar effects of L-FABP and ACBP on microsomal phosphatidic acid biosynthesis were mediated primarily through the activity of glycerol-3-phosphate acyltransferase (GPAT), the rate limiting step, rather than by protecting the long chain acyl-CoAs from microsomal hydrolase activity. In fact, ACBP but not L-FABP protected long chain fatty acyl-CoAs from microsomal acyl-CoA hydrolase activity in the order: palmitoyl-CoA>oleoyl-CoA>arachidonoyl-CoA. In summary, the data established for the first time a role for both L-FABP and ACBP in microsomal phosphatidic acid biosynthesis. By preferentially stimulating microsomal transacylation of unsaturated long chain fatty acyl-CoAs while concomitantly exerting their differential protection from microsomal acyl-CoA hydrolase, L-FABP and ACBP can uniquely function in modulating the pattern of fatty acids esterified to phosphatidic acid, the de novo precursor of phospholipids and triacylglycerols. This may explain in part the simultaneous presence of these proteins in cell types involved in fatty acid absorption and lipoprotein secretion.  相似文献   
92.
Leaching of the internal apolar phase from the biopolymeric microparticles during storage is a great concern as it undoes the beneficial effects of encapsulation. In this paper, a novel formulation was prepared by encapsulating the sunflower oil-based organogels in alginate microparticles. Salicylic acid and metronidazole were used as the model drugs. The microparticles were prepared by double emulsion methodology. Physico-chemical characterization of the microparticles was done by microscopy, FTIR, XRD, and DSC studies. Oil leaching studies, biocompatibility, mucoadhesivity, in vitro drug release, and the antimicrobial efficiency of the microparticles were also performed. The microparticles were found to be spherical in shape. Gelation of the sunflower oil prevented leaching of the internal phase from the microparticles. Release of drugs from the microparticles followed Fickian kinetics and non-Fickian kinetics in gastric and intestinal environments, respectively. Microparticles showed good antimicrobial activity against both Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. The results suggested that the developed formulations hold promise to carry oils without leakage of the internal phase. Encapsulation of organogels within the microparticles has improved the drug entrapment efficiency and improved characteristics for controlled delivery applications.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-014-0147-2) contains supplementary material, which is available to authorized users.KEY WORDS: alginate, drug delivery, leaching, microparticles, organogels  相似文献   
93.
Direct cell-to-cell spread of human immunodeficiency virus type 1 (HIV-1) between T cells at the virological synapse (VS) is an efficient mechanism of viral dissemination. Tetherin (BST-2/CD317) is an interferon-induced, antiretroviral restriction factor that inhibits nascent cell-free particle release. The HIV-1 Vpu protein antagonizes tetherin activity; however, whether tetherin also restricts cell-cell spread is unclear. We performed quantitative cell-to-cell transfer analysis of wild-type (WT) or Vpu-defective HIV-1 in Jurkat and primary CD4+ T cells, both of which express endogenous levels of tetherin. We found that Vpu-defective HIV-1 appeared to disseminate more efficiently by cell-to-cell contact between Jurkat cells under conditions where tetherin restricted cell-free virion release. In T cells infected with Vpu-defective HIV-1, tetherin was enriched at the VS, and VS formation was increased compared to the WT, correlating with an accumulation of virus envelope proteins on the cell surface. Increasing tetherin expression with type I interferon had only minor effects on cell-to-cell transmission. Furthermore, small interfering RNA (siRNA)-mediated depletion of tetherin decreased VS formation and cell-to-cell transmission of both Vpu-defective and WT HIV-1. Taken together, these data demonstrate that tetherin does not restrict VS-mediated T cell-to-T cell transfer of Vpu-defective HIV-1 and suggest that under some circumstances tetherin might promote cell-to-cell transfer, either by mediating the accumulation of virions on the cell surface or by regulating integrity of the VS. If so, inhibition of tetherin activity by Vpu may balance requirements for efficient cell-free virion production and cell-to-cell transfer of HIV-1 in the face of antiviral immune responses.Human immunodeficiency virus type 1 can disseminate between and within hosts by cell-free infection or by direct cell-cell spread. Cell-cell spread of HIV-1 between CD4+ T cells is an efficient means of viral dissemination (65) and has been estimated to be several orders of magnitude more rapid than cell-free virus infection (6, 8, 41, 64, 74). Cell-cell transmission of HIV-1 takes place at the virological synapse (VS), a multimolecular structure that forms at the interface between an HIV-1-infected T cell and an uninfected target T cell during intercellular contact (27). Related structures that facilitate cell-cell spread of HIV-1 between dendritic cells and T cells (42) and between macrophages and T cells (16, 17) and for cell-cell spread of the related retrovirus human T-cell leukemia virus type 1 (HTLV-1) (24) have also been described. Moreover, more long-range cell-cell transfer can occur via cellular projections, including filopodia (71) and membrane nanotubes (75). The VS is initiated by binding of the HIV-1 envelope glycoprotein (Env), which is expressed on the surfaces of infected T cells, to HIV-1 entry receptors (CD4 and either CXCR4 or CCR5) present on the target cell membrane (6, 22, 27, 41, 61, 73). Interactions between LFA-1 and ICAM-1 and ICAM-3 further stabilize the conjugate interface and, together with Env receptor binding, help trigger the recruitment of viral proteins, CD4/coreceptor, and integrins to the contact site (27, 28, 61). The enrichment of viral and cellular proteins at the VS is an active process, dependent on cytoskeletal remodeling, and in the infected T cell both the actin and tubulin network regulate polarization of HIV-1 proteins at the cell-cell interface, thus directing HIV-1 assembly and egress toward the engaged target cell (27, 29). Virus is transferred by budding into the synaptic cleft, and virions subsequently attach to the target cell membrane to mediate entry, either by fusion at the plasma membrane or possibly following endocytic uptake (2, 22). In this way, the VS promotes more rapid infection kinetics and may enhance HIV-1 pathogenesis in vivo.Cells have evolved a number of barriers to resist invading microorganisms. One mechanism that appears to be particularly important in counteracting HIV-1 infection is a group of interferon-inducible, innate restriction factors that includes TRIM5α, APOBEC3G, and tetherin (38, 49, 69, 79). Tetherin (BST-2/CD317) is a host protein expressed by many cell types, including CD4+ T cells, that acts at a late stage of the HIV-1 life cycle to trap (or “tether”) mature virions at the plasma membranes of virus-producing cells, thereby inhibiting cell-free virus release (49, 56, 81). This antiviral activity of tetherin is not restricted to HIV-1, and tetherin can also inhibit the release of other enveloped viruses from infected cells (31, 40, 54, 62). What the cellular function of tetherin is besides its antiviral activity is unclear, but because expression is upregulated following alpha/beta interferon (IFN-α/β) treatment (1) and tetherin can restrict a range of enveloped viruses, tetherin has been postulated to be a broad-acting mediator of the innate immune defense against enveloped viruses.To circumvent restriction of particle release, HIV-1 encodes the 16-kDa accessory protein Vpu, which antagonizes tetherin and restores normal virus budding (47, 78). The molecular mechanisms by which Vpu does this are not entirely clear, but evidence suggests that Vpu may exert its antagonistic function by downregulating tetherin from the cell surface, trapping it in the trans-Golgi network (10) and targeting it for degradation by the proteasome (12, 39, 81) or lysosome (9, 25, 44); however, degradation of tetherin may be dispensable for Vpu activity (13), and in HIV-1-infected T cells, surface downregulation of tetherin has been reported to be minor (45), suggesting that global removal of tetherin from the plasma membrane may not be necessary to antagonize its function.Tetherin-mediated restriction of HIV-1 and antagonism by Vpu have been the focus of much research, and inhibition of cell-free virus infection has been well documented (33, 47-49, 77, 81, 82). In contrast, less studied is the impact of tetherin on direct cell-cell dissemination. For example, it is not clear if tetherin-mediated restriction inhibits T cell-T cell spread as efficiently as cell-free release or whether tetherin affects VS formation. To address these questions, we analyzed Vpu+ and Vpu viruses for their ability to spread directly between Jurkat T cells and primary CD4+ T cells in the presence or absence of endogenous tetherin. Our data suggest that tetherin does not restrict HIV-1 in the context of cell-to-cell transmission of virus between T cells expressing endogenous tetherin. Interestingly, we also that observed that Vpu-defective virus may disseminate more efficiently by cell-cell spread at the VS. We postulate that cell-cell spread may favor viral pathogenesis by allowing HIV-1 to disseminate in the presence of tetherin during an interferon-producing innate response.  相似文献   
94.
95.
We describe dental microwear in baboons (Papio hamadryas sensu lato) from the anubis-hamadryas hybrid zone of Awash National Park, Ethiopia, outline its variation with sex and age, and attempt to relate the observed microwear pattern to environment and diet. Casts of the maxillary second molar of 52 adult and subadult individuals of both sexes were examined with a scanning electron microscope at x 500. Digitized micrographs were taken at a consistent location on facet 9, and microwear was recorded with an image analysis software package. Univariate and multivariate statistics were used to investigate the shape, size, and density of microwear features. The overall pattern of microwear exhibits an unusual combination of high feature density, with numerous small pits and relatively wide striations, and a high correlation between width of pits and striations across individuals. We interpret this pattern as predominantly the consequence of abrasion by relatively small-caliber environmental grit when accidentally ingested with tough foods such as dried seeds and fruits, as expected in a terrestrial omnivore living in a dusty habitat. Statistical analysis revealed no significant differences between groups defined by sex, age, or troop membership, a result consistent with qualitative observations of feeding habits in this population, and which lends no support to the hypothesis that the longer jaws of adult males should result in longer striations. A trend towards greater feature density in females, however, might be due to limited sexual dinichism, and merits further investigation.  相似文献   
96.
Metabolic changes during rooting in stem cuttings of five mangrove species   总被引:3,自引:0,他引:3  
Vegetative propagation through rooting in stem cuttings in five tree mangroves namely Bruguiera parviflora, Cynometra iripa, Excoecaria agallocha, Heritiera fomes, and Thespesia populnea using IAA, IBA and NAA was reported. Spectacular increase in the root number was noted in the cuttings of H. fomes and C. iripa treated together with IBA (5000 ppm) and NAA (2500 ppm). The highest number of roots was obtained with IBA (2500 ppm) and NAA (500 ppm) in E. agallocha. B. parviflora and T. populnea responded better to IAA and IBA treatment. The species specific variation in the rooting response to exogenous application of auxins was reflected in the metabolic changes during initiation and development of roots in cuttings. Biochemical analysis showed increase of reducing sugar in the above-girdled tissues at initiation as well as subsequent development of roots which was further enhanced by the use of auxins. Decreases in the total sugar, total carbohydrate and polyphenols and increase in total nitrogen were recorded in the girdled tissues and the high C/N ratio at the initial stage helped in initiation of roots in all the species. Interaction of IBA and NAA promoted starch hydrolysis better than IAA and IBA during root development and subsequently reduced the C/N ratio and increased the protein-nitrogen activity during root development which suggest the auxin influenced mobilization of nitrogen to the rooting zone.Abbreviations IAA Indole-3-acetic acid - IBA Indole-butyric acid - NAA A-naphthalene acetic acid  相似文献   
97.
Serum inhibin and FSH and FSH beta subunit mRNA levels were measured at 3h intervals throughout the 4 day estrous cycle in female rats and hourly between 1000 and 2400 h of proestrus. On proestrus, serum inhibin concentrations fell during the late morning-early afternoon, then increased transiently during the late afternoon gonadotropin surges. Inhibin levels decreased during the late evening of proestrus, coincident with the FSH surge-related rise in FSH beta mRNA levels. Serum inhibin remained relatively stable during estrus and early metestrus, but rose during the late evening of metestrus and remained elevated until early diestrus. FSH beta mRNA levels were elevated on late estrus and early metestrus and declined during the evening of metestrus as serum inhibin levels increased. These data show that concentrations of serum inhibin change during the estrous cycle and that a general inverse relationship exists between serum inhibin and FSH levels and FSH beta mRNA concentrations in the pituitary. This suggests that inhibin may inhibit FSH beta gene expression and FSH secretion during the 4 day cycle in female rats.  相似文献   
98.
Post-transfusion malaria in thalassaemia patients   总被引:1,自引:0,他引:1  
A total of 125 beta-thalassaemia patients receiving repeated blood transfusions were screened by Giemsa stain, Acridine-orange stain and antigen detection for evidence of malaria infection on each visit. A total of 8 (6.4%) of the patients developed post-transfusion malaria (PMT) as confirmed by tracing the infected blood donors. A high incidence of PTM in thalassaemia patients appears to be due to the use of fresh blood and the high frequency of blood transfusions required by these patients. Antigen detection using monoclonal antibody was found to be more sensitive for diagnosis of PTM and for screening suspected donors than the conventional blood smear examination methods and is therefore recommended for routine blood donor screening to rule out malaria infection.  相似文献   
99.
The ability to deliver genes as therapeutics requires an understanding of the vector pharmacokinetics similar to that required for conventional drugs. A first question is the half-life of the vector in the bloodstream. Retroviral vectors produced in certain human cell lines differ from vectors produced in nonhuman cell lines in being substantially resistant to inactivation in vitro by human serum complement (F. L. Cosset, Y. Takeuchi, J. L. Battini, R. A. Weiss, and M. K. Collins, J. Virol. 69:7430-7436, 1995). Thus, use of human packaging cell lines (PCL) may produce vectors with longer half-lives, resulting in more-efficacious in vivo gene therapy. However, survival of human PCL-produced vectors in vivo following systemic administration has not been explored. In this investigation, the half-lives of retroviral vectors packaged by either canine D17 or human HT1080 PCL were measured in the bloodstreams of macaques and chimpanzees. Human PCL-produced vectors exhibited significantly higher concentrations of circulating biologically active vector at the earliest time points measured (>1, 000-fold in chimpanzees), as well as substantially extended half-lives, compared to canine PCL-produced vectors. In addition, the circulation half-life of human PCL-produced vector was longer in chimpanzees than in macaques. This was consistent with in vitro findings which demonstrated that primate serum inactivation of vector produced from human PCL increased with increasing phylogenetic distance from humans. These results establish that in vivo retroviral vector half-life correlates with in vitro resistance to complement. Furthermore, these findings should influence the choice of animal models used to evaluate retroviral-vector-based therapies.  相似文献   
100.
A series of 5-amino derivatives of 8-hydroxy[1,6]-naphthyridine-7-carboxamide exhibiting sub-micromolar potency against replication of HIV-1 in cell culture was identified. One of these analogs, compound 12, displayed excellent pharmacokinetic properties when dosed orally in rats and in monkeys. This compound was demonstrated to be efficacious against replication of simian-human immunodeficiency virus (SHIV) 89.6P in infected rhesus macaques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号