首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   394篇
  免费   11篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   1篇
  2018年   5篇
  2017年   6篇
  2016年   7篇
  2015年   14篇
  2014年   22篇
  2013年   40篇
  2012年   28篇
  2011年   26篇
  2010年   11篇
  2009年   14篇
  2008年   17篇
  2007年   14篇
  2006年   16篇
  2005年   16篇
  2004年   15篇
  2003年   20篇
  2002年   16篇
  2001年   6篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1997年   5篇
  1996年   7篇
  1995年   3篇
  1994年   8篇
  1993年   2篇
  1992年   6篇
  1991年   7篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   7篇
  1980年   5篇
  1979年   4篇
  1978年   4篇
  1976年   1篇
  1965年   2篇
  1963年   1篇
排序方式: 共有405条查询结果,搜索用时 31 毫秒
331.
332.
Butterfly wing color patterns often contain eyespots, which are developmentally determined at the late larval and early pupal stages by organizing activities of focal cells that can later form eyespot foci. In the pupal stage, the focal position of a future eyespot is often marked by a focal spot, one of the pupal cuticle spots, on the pupal surface. Here, we examined the possible relationships of the pupal focal spots with the underneath pupal wing tissues and with the adult wing eyespots using Junonia butterflies. Large pupal focal spots were found in two species with large adult eyespots, J. orithya and J. almana, whereas only small pupal focal spots were found in a species with small adult eyespots, J. hedonia. The size of five pupal focal spots on a single wing was correlated with the size of the corresponding adult eyespots in J. orithya. A pupal focal spot was a three-dimensional bulge of cuticle surface, and the underside of the major pupal focal spot exhibited a hollowed cuticle in a pupal case. Cross sections of a pupal wing revealed that the cuticle layer shows a curvature at a focal spot, and a positional correlation was observed between the cuticle layer thickness and its corresponding cell layer thickness. Adult major eyespots of J. orithya and J. almana exhibited surface elevations and depressions that approximately correspond to the coloration within an eyespot. Our results suggest that a pupal focal spot is produced by the organizing activity of focal cells underneath the focal spot. Probably because the focal cell layer immediately underneath a focal spot is thicker than that of its surrounding areas, eyespots of adult butterfly wings are three-dimensionally constructed. The color-height relationship in adult eyespots might have an implication in the developmental signaling for determining the eyespot color patterns.  相似文献   
333.
This data paper reports census data of ground-dwelling beetle and other fauna of the forest floor environment; collections were made from a network of 22 forest sites in Japan. To our knowledge, this represents the largest dataset for long-term monitoring of a ground-dwelling beetle community and other taxa in a ground environment in forests, which covers a broad climatic range in the temperate zone and is freely available. The network forms part of the Monitoring Sites 1000 Project launched by the Ministry of the Environment, Japan. It covers subalpine, cool- and warm-temperate and subtropical climatic zones and the four major forest types of Japan. Thirty-three permanent plots usually 1 ha in size were established in old-growth, secondary natural and a few plantation forests. Censuses of the ground-dwelling beetle community were conducted using pitfall trapping and forest floor environment monitoring every year from 2004 to the present. During the initial 9 years of the census (2004–2012), 59,762 beetle individuals (including 3182 larvae) of more than 314 species were recorded. This dataset includes taxonomy and biomass of each beetle individual and each taxonomic group of other invertebrates coincidently captured in pitfall trapping. The dataset also includes data related to ground coverage by forest floor vegetation, dry mass of the accumulated organic litter layer, and carbon and nitrogen contents and cellulose decomposition rate in organic layer and surface mineral soil. The data could be used to investigate geographical patterns and intra- and inter-annual dynamics of individual body mass, populations and community structures of ground-dwelling beetles, and their relationships with the forest floor environment. Furthermore, the data could be analyzed with other open datasets related to tree community dynamics and litter fall continuously measured in the same study plots. This dataset also provides information related to the distribution and average body mass of each beetle species.  相似文献   
334.
Deficits in prepulse inhibition (PPI) are a biological marker for schizophrenia. To unravel the mechanisms that control PPI, we performed quantitative trait loci (QTL) analysis on 1,010 F2 mice derived by crossing C57BL/6 (B6) animals that show high PPI with C3H/He (C3) animals that show low PPI. We detected six major loci for PPI, six for the acoustic startle response, and four for latency to response peak, some of which were sex-dependent. A promising candidate on the Chromosome 10-QTL was Fabp7 (fatty acid binding protein 7, brain), a gene with functional links to the N-methyl-D-aspartic acid (NMDA) receptor and expression in astrocytes. Fabp7-deficient mice showed decreased PPI and a shortened startle response latency, typical of the QTL's proposed effects. A quantitative complementation test supported Fabp7 as a potential PPI-QTL gene, particularly in male mice. Disruption of Fabp7 attenuated neurogenesis in vivo. Human FABP7 showed altered expression in schizophrenic brains and genetic association with schizophrenia, which were both evident in males when samples were divided by sex. These results suggest that FABP7 plays a novel and crucial role, linking the NMDA, neurodevelopmental, and glial theories of schizophrenia pathology and the PPI endophenotype, with larger or overt effects in males. We also discuss the results from the perspective of fetal programming.  相似文献   
335.
336.
337.
Membrane fusion without lysis has been reconstituted with purified yeast vacuolar SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), the SNARE chaperones Sec17p/Sec18p and the multifunctional HOPS complex, which includes a subunit of the SNARE-interactive Sec1-Munc18 family, and vacuolar lipids: phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidic acid (PA), cardiolipin (CL), ergosterol (ERG), diacylglycerol (DAG), and phosphatidylinositol 3-phosphate (PI3P). We now report that many of these lipids are required for rapid and efficient fusion of the reconstituted SNARE proteoliposomes in the presence of SNARE chaperones. Omission of either PE, PA, or PI3P from the complete set of lipids strongly reduces fusion, and PC, PE, PA, and PI3P constitute a minimal set of lipids for fusion. PA could neither be replaced by other lipids with small headgroups such as DAG or ERG nor by the acidic lipids PS or PI. PA is needed for full association of HOPS and Sec18p with proteoliposomes having a minimal set of lipids. Strikingly, PA and PE are as essential for SNARE complex assembly as for fusion, suggesting that these lipids facilitate functional interactions among SNAREs and SNARE chaperones.Biological membrane fusion is the regulated rearrangement of the lipids in two apposed sealed membranes to form one bilayer while mixing lumenal contents without leakage or lysis. It is fundamental for intracellular vesicular traffic, cell growth and division, regulated secretion of hormones and other blood proteins, and neurotransmission and thus has attracted wide and sustained study (1, 2). Its fundamental mechanisms are conserved and employ a Rab-family GTPase, proteins which bind to the GTP-bound form of a Rab, termed its “effectors” (3), and SNARE3 (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) proteins (4) with their attendant chaperones. SNAREs are integral or peripheral membrane proteins with characteristic heptad-repeat domains, which can associate in 4-helical coiled-coils (5), termed “cis-SNARE complexes,” if they are all anchored to the same membrane bilayer, or “trans-SNARE complexes” if they are anchored to apposed membranes.Stable membrane proximity (docking) does not suffice for fusion. Studies in model systems have shown that fusion can be promoted by any of several agents, which promote bilayer rearrangement, such as diacylglycerol (6), high levels of calcium (7), viral-encoded fusion proteins (8, 9), or SNAREs (10, 11). These studies frequently employed liposomes or proteoliposomes of simple lipid composition, suggesting that fusion may not have stringent requirements of lipid head group species. However, each of these model fusion reactions is accompanied by substantial lysis (1215), whereas the preservation of subcellular compartments is a hallmark of physiological membrane fusion.We have studied membrane fusion with the vacuole (lysosome) of Saccharomyces cerevisiae (reviewed in Ref. 16). The fusion of isolated vacuoles requires the Rab Ypt7p, 4 SNAREs (Vam3p, Vti1p, Vam7p, and Nyv1p), the SNARE chaperones Sec17p (α-soluble N-ethylmaleimide-sensitive factor attachment protein)/Sec18p (N-ethylmaleimide-sensitive factor) and the hexameric HOPS complex (17), and key “regulatory” lipids including ERG, phosphoinositides, and DAG (18). HOPS interacts physically or functionally with each component of this fusion system. HOPS stably associates with Ypt7p in its GTP-bound state (19). One HOPS subunit, Vps33p, is a member of the Sec1-Munc18 family of SNARE-binding proteins, and HOPS exhibits direct affinity for SNAREs (17, 2022) and proofreads correct vacuolar SNARE pairing (23). HOPS also has direct affinity for phosphoinositides (17). The SNAREs on isolated vacuoles are in cis-complexes, which are disassembled by Sec17p, Sec18p, and ATP (24). Docking requires Ypt7p (25) and HOPS (17). During docking, vacuoles are drawn against each other until each has a substantial membrane domain tightly apposed to the other. Each of the proteins (26) and lipids (18) required for fusion becomes enriched in a ring-shaped microdomain, the “vertex ring,” which surrounds the two tightly apposed membrane domains. Not only do the proteins depend on each other, in a cascade fashion, for vertex ring enrichment, and the lipids depend on each other for their vertex ring enrichment as well, but the lipids and proteins are mutually interdependent for their enrichment at this ring-shaped microdomain (18, 27). Fusion occurs around the ring, joining the two organelles. The fusion of vacuoles bearing physiological fusion constituents does not cause measurable organelle lysis, although fusion supported exclusively by higher levels of SNARE proteins is accompanied by massive lysis (28), in accord with model liposome studies (14). Thus fusion microdomain assembly and the coordinate action of SNAREs with other proteins and lipids to promote fusion without lysis are central topics in membrane fusion studies.Reconstitution of fusion with pure components allows chemical definition of essential elements of this biologically important reaction. Although SNAREs can drive a slow fusion of PC/PS proteoliposomes (29), this was not stimulated by HOPS and Sec17p/Sec18p (30). SNARE proteoliposomes bearing all the vacuolar lipids (18, 3133), PC, PE, PI, PS, CL, PA, ERG, DAG, PI3P, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), showed rapid and efficient fusion that was fully dependent on Sec17p/Sec18p and HOPS (30). The omission of either DAG, ERG, or phosphoinositide from the liposomes caused a marked reduction in fusion (30). We now report that PE and PA are also necessary for rapid and efficient fusion, function in distinct manners, and are required for efficient assembly of newly formed SNARE complexes by the SNARE chaperones Sec17p/Sec18p and HOPS.  相似文献   
338.
Laurencia marilzae Gil‐Rodríguez, Sentíes et M.T. Fujii sp. nov. is described based on specimens that have been collected from the Canary Islands. This new species is characterized by distinctive yellow–orange as its natural habitat color, a terete thallus, four pericentral cells per vegetative axial segment, presence of secondary pit‐connections between adjacent cortical cells, markedly projecting cortical cells, and also by the presence of corps en cerise (one per cell) present in all cells of the thallus (cortical, medullary, including pericentral and axial cells, and trichoblasts). It also has a procarp‐bearing segment with five pericentral cells and tetrasporangia that are produced from the third and fourth pericentral cells, which are arranged in a parallel manner in relation to fertile branchlets. The phylogenetic position of this taxon was inferred based on chloroplast‐encoded rbcL gene sequence analyses. Within the Laurencia assemblage, L. marilzae formed a distinctive lineage sister to all other Laurencia species analyzed. Previously, a large number of unique diterpenes dactylomelane derivatives were isolated and identified from this taxon. L. marilzae is morphologically, genetically, and chemically distinct from all other related species of the Laurencia complex described.  相似文献   
339.
340.
Vascular functions are regulated not only by chemical mediators, such as hormones, cytokines, and neurotransmitters, but by mechanical hemodynamic forces generated by blood flow and blood pressure. The mechanical force-mediated regulation is based on the ability of vascular cells, including endothelial cells and smooth muscle cells, to recognize fluid mechanical forces, i.e., the shear stress produced by flowing blood and the cyclic strain generated by blood pressure, and to transmit the signals into the cell interior, where they trigger cell responses that involve changes in cell morphology, cell function, and gene expression. Recent studies have revealed that immature cells, such as endothelial progenitor cells (EPCs) and embryonic stem (ES) cells, as well as adult vascular cells, respond to fluid mechanical forces. Shear stress and cyclic strain promote the proliferation and differentiation of EPCs and ES cells into vascular cells and enhance their ability to form new vessels. Even more recently, attempts have been made to apply fluid mechanical forces to EPCs and ES cells cultured on polymer tubes and develop tissue-engineered blood vessel grafts that have a structure and function similar to that of blood vessels in vivo. This review summarizes the current state of knowledge concerning the mechanobiological responses of stem/progenitor cells and its potential applications to tissue engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号