全文获取类型
收费全文 | 583篇 |
免费 | 27篇 |
专业分类
610篇 |
出版年
2023年 | 3篇 |
2022年 | 9篇 |
2021年 | 12篇 |
2020年 | 12篇 |
2019年 | 12篇 |
2018年 | 14篇 |
2017年 | 9篇 |
2016年 | 15篇 |
2015年 | 22篇 |
2014年 | 25篇 |
2013年 | 47篇 |
2012年 | 48篇 |
2011年 | 49篇 |
2010年 | 27篇 |
2009年 | 24篇 |
2008年 | 34篇 |
2007年 | 23篇 |
2006年 | 28篇 |
2005年 | 32篇 |
2004年 | 36篇 |
2003年 | 25篇 |
2002年 | 24篇 |
2001年 | 10篇 |
2000年 | 6篇 |
1999年 | 3篇 |
1998年 | 5篇 |
1997年 | 6篇 |
1996年 | 2篇 |
1995年 | 5篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1989年 | 2篇 |
1988年 | 8篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1982年 | 3篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1979年 | 4篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1968年 | 1篇 |
1967年 | 1篇 |
1965年 | 2篇 |
排序方式: 共有610条查询结果,搜索用时 15 毫秒
91.
92.
Chenguang Zhou Sophie Lehar Johnny Gutierrez Carrie M. Rosenberger Nina Ljumanovic Jason Dinoso 《MABS-AUSTIN》2016,8(8):1612-1619
DSTA4637A, a novel THIOMAB? antibody antibiotic conjugate (TAC) against Staphylococcus aureus (S. aureus), is currently being investigated as a potential therapy against S. aureus infections. Structurally, TAC is composed of an anti-S. aureus antibody linked to a potent antibiotic, dmDNA31. The goal of the current study was to characterize the pharmacokinetics (PK) of TAC in mice, assess the effect of S. aureus infection on its PK, and evaluate its pharmacodynamics (PD) by measuring the bacterial load in various organs at different timepoints following TAC treatment. Plasma concentrations of 3 analytes, total antibody (TAb), antibody-conjugated dmDNA31 (ac-dmDNA31), and unconjugated dmDNA31, were measured in these studies. In non-infected mice (target antigen absent), following intravenous (IV) administration of a single dose of TAC, systemic concentration-time profiles of both TAb and ac-dmDNA31 were bi-exponential and characterized by a short distribution phase and a long elimination phase as expected for a monoclonal antibody-based therapeutic. Systemic exposures of both TAb and ac-dmDNA31 were dose proportional over the dose range tested (5 to 50 mg/kg). In a mouse model of systemic S. aureus infection (target antigen present), a single IV dose of TAC demonstrated PK behavior similar to that in the non-infected mice, and substantially reduced bacterial load in the heart, kidney, and bones on 7 and 14 d post dosing. These findings have increased our understanding of the PK and PK/PD of this novel molecule, and have shown that at efficacious dose levels the presence of S. aureus infection had minimal effect on TAC PK. 相似文献
93.
Xiaodong Mu Chieh Tseng William S. Hambright Polina Matre Chih‐Yi Lin Palas Chanda Wanqun Chen Jianhua Gu Sudheer Ravuri Yan Cui Ling Zhong John P. Cooke Laura J. Niedernhofer Paul D. Robbins Johnny Huard 《Aging cell》2020,19(8)
Hutchinson–Gilford progeria syndrome (HGPS) is caused by the accumulation of mutant prelamin A (progerin) in the nuclear lamina, resulting in increased nuclear stiffness and abnormal nuclear architecture. Nuclear mechanics are tightly coupled to cytoskeletal mechanics via lamin A/C. However, the role of cytoskeletal/nuclear mechanical properties in mediating cellular senescence and the relationship between cytoskeletal stiffness, nuclear abnormalities, and senescent phenotypes remain largely unknown. Here, using muscle‐derived mesenchymal stromal/stem cells (MSCs) from the Zmpste24?/? (Z24?/?) mouse (a model for HGPS) and human HGPS fibroblasts, we investigated the mechanical mechanism of progerin‐induced cellular senescence, involving the role and interaction of mechanical sensors RhoA and Sun1/2 in regulating F‐actin cytoskeleton stiffness, nuclear blebbing, micronuclei formation, and the innate immune response. We observed that increased cytoskeletal stiffness and RhoA activation in progeria cells were directly coupled with increased nuclear blebbing, Sun2 expression, and micronuclei‐induced cGAS‐Sting activation, part of the innate immune response. Expression of constitutively active RhoA promoted, while the inhibition of RhoA/ROCK reduced cytoskeletal stiffness, Sun2 expression, the innate immune response, and cellular senescence. Silencing of Sun2 expression by siRNA also repressed RhoA activation, cytoskeletal stiffness and cellular senescence. Treatment of Zmpste24?/? mice with a RhoA inhibitor repressed cellular senescence and improved muscle regeneration. These results reveal novel mechanical roles and correlation of cytoskeletal/nuclear stiffness, RhoA, Sun2, and the innate immune response in promoting aging and cellular senescence in HGPS progeria. 相似文献
94.
Choanocotyle hobbsi n. sp. and Choanocotyle juesuei n. sp. are described from the small intestine of the oblong turtle Chelodina oblonga from the vicinity of Perth, Western Australia. These are the third and fourth species referred to Choanocotyle. Choanocotyle hobbsi is most similar to Choanocotyle nematoides but differs in the size and shape of the oral sucker and the absence of a median loop in the cirrus sac. Choanocotyle juesuei is most similar to Choanocotyle elegans but differs in the size of the oral sucker and other morphometric criteria. Comparative analysis of the sequences of different nuclear ribosomal deoxyribonucleic acid regions of C. nematoides and C. hobbsi has confirmed that they are closely related but distinct species. 相似文献
95.
Molecular chaperones have the capacity to prevent inappropriate interactions between aggregation-prone folding or unfolding intermediates created in the cell during protein synthesis or in response to physical and chemical stress. What happens when surveillance by molecular chaperones is evaded or overwhelmed and aggregates accumulate? Recent progress in the elucidation of Hsp100/Clp function suggests that intracellular aggregates or stable complexes can be progressively dissolved by the action of chaperones that act as molecular crowbars or ratchets. These insights set the stage for new progress in the understanding and treatment of diseases of protein folding. 相似文献
96.
Zheng B Cao B Crisan M Sun B Li G Logar A Yap S Pollett JB Drowley L Cassino T Gharaibeh B Deasy BM Huard J Péault B 《Nature biotechnology》2007,25(9):1025-1034
We document anatomic, molecular and developmental relationships between endothelial and myogenic cells within human skeletal muscle. Cells coexpressing myogenic and endothelial cell markers (CD56, CD34, CD144) were identified by immunohistochemistry and flow cytometry. These myoendothelial cells regenerate myofibers in the injured skeletal muscle of severe combined immunodeficiency mice more effectively than CD56+ myogenic progenitors. They proliferate long term, retain a normal karyotype, are not tumorigenic and survive better under oxidative stress than CD56+ myogenic cells. Clonally derived myoendothelial cells differentiate into myogenic, osteogenic and chondrogenic cells in culture. Myoendothelial cells are amenable to biotechnological handling, including purification by flow cytometry and long-term expansion in vitro, and may have potential for the treatment of human muscle disease. 相似文献
97.
Swartling U Hansson MG Ludvigsson J Nordgren A 《Journal of empirical research on human research ethics》2011,6(4):68-75
The participation of children in medical research raises many ethical issues, in particular regarding assent. However, little is known about children's own views on participation. This study presents results from interviews with children 10-12 years old with and without experience in a large-scale longitudinal screening study. We identified five themes: (1) knowledge about research, (2) a sense of altruism, (3) shared decision-making and right to dissent, (4) notions of integrity, privacy, and access, and (5) understanding of disease risk and personal responsibilities. We conclude that the children feel positive towards medical research, and want to take an active part in decisions and have their integrity respected. However, the study also indicates that children who had participated in longitudinal screening had a limited understanding, suggesting the vital importance of providing information appropriate to their age and maturity. This information should be provided out of respect for the children as persons, but also to promote their willingness to continue participating in longitudinal studies. 相似文献
98.
Zafar Amin BA Beaugrand J Debeire P Chabbert B Bertrand I 《Comptes rendus biologies》2011,334(11):824-836
This study was focused on investigating the role of the initial residue community, i.e. microorganisms and enzymes from the epiphytic and endophytic compartments, in soil decomposition processes. Aerial and underground parts (leaves and roots) of maize (Zea mays L.) plants were γ-irradiated, surface-sterilized with sodium hypochlorite (NaOCl)/ethanol or non-sterilized (controls), while the outer surface morphology of maize leaves and roots was examined by scanning electron microscopy (SEM). Non-sterilized and sterilized maize leaves and roots were incubated in soil to study carbon (C) mineralization kinetics and enzyme dynamics (L-leucine aminopeptidase, CBH-1, xylanase, cellulase and laccase). SEM results showed that initial microbial colonization was more pronounced on non-sterilized leaf and root surfaces than on sterilized samples. The hypochlorite treatment removed a part of the soluble components of leaves by washing and no specific effect of any type of colonizing microorganisms was observed on C mineralization. In contrast, γ irradiation and hypochlorite treatments did not affect root chemical characteristics and the quantitative effect of initial residue-colonizing microorganisms on C mineralization was demonstrated. The variations in C mineralization and enzyme dynamics between non-sterilized and sterilized roots suggested that activities of epiphytic and endogenic microorganisms were of the same order of magnitude. 相似文献
99.
Background
Despite the initial promise of myoblast transfer therapy to restore dystrophin in Duchenne muscular dystrophy patients, clinical efficacy has been limited, primarily by poor cell survival post-transplantation. Murine muscle derived stem cells (MDSCs) isolated from slowly adhering cells (SACs) via the preplate technique, induce greater muscle regeneration than murine myoblasts, primarily due to improved post-transplantation survival, which is conferred by their increased stress resistance capacity. Aldehyde dehydrogenase (ALDH) represents a family of enzymes with important morphogenic as well as oxidative damage mitigating roles and has been found to be a marker of stem cells in both normal and malignant tissue. In this study, we hypothesized that elevated ALDH levels could identify murine and human muscle derived cell (hMDC) progenitors, endowed with enhanced stress resistance and muscle regeneration capacity.Methodology/Principal Findings
Skeletal muscle progenitors were isolated from murine and human skeletal muscle by a modified preplate technique and unfractionated enzymatic digestion, respectively. ALDHhi subpopulations isolated by fluorescence activate cell sorting demonstrated increased proliferation and myogenic differentiation capacities compared to their ALDHlo counterparts when cultivated in oxidative and inflammatory stress media conditions. This behavior correlated with increased intracellular levels of reduced glutathione and superoxide dismutase. ALDHhi murine myoblasts were observed to exhibit an increased muscle regenerative potential compared to ALDHlo myoblasts, undergo multipotent differentiation (osteogenic and chondrogenic), and were found predominately in the SAC fraction, characteristics that are also observed in murine MDSCs. Likewise, human ALDHhi hMDCs demonstrated superior muscle regenerative capacity compared to ALDHlo hMDCs.Conclusions
The methodology of isolating myogenic cells on the basis of elevated ALDH activity yielded cells with increased stress resistance, a behavior that conferred increased regenerative capacity of dystrophic murine skeletal muscle. This result demonstrates the critical role of stress resistance in myogenic cell therapy as well as confirms the role of ALDH as a marker for rapid isolation of murine and human myogenic progenitors for cell therapy. 相似文献100.
The effects of simulated goose grazing on common saltmarsh-grass Puccinellia maritima plants were tested on a Danish salt marsh during the flightless moulting period of greylag geese Anser anser (3–21 June 1998). Plants in an area exclosed from the influence of grazing and the nutrient effects of goose faeces were subject to removal of youngest lamina at 3-, 6-, 9- and 18-day intervals during this period. Average biomass and protein accumulation between harvests was highest at defoliation intervals of 9 days or more. Field observations from two separate study areas demonstrated geese returned to regraze the Puccinellia sward after 6–8 days and oesophageal contents from feeding geese showed selection for lamina lengths consistent with the results of clipping every 6 days. Geese therefore regrazed Puccinellia patches at shorter intervals than expected were they to maximise their intake of biomass or protein at each visit. However, total cumulative lamina elongation, equivalent to the long term gain during the entire moult period, showed no significant difference between the three most intensive defoliation treatments, which were significantly greater than those of plants defoliated at 18 day intervals. Highest overall lamina protein levels were maintained at 6- and 9-day defoliation intervals. This suggests geese regrazed Puccinellia patches at a rate that maximised their number of harvests during the flightless period, but maintained highest protein levels and overall biomass in the sward. This suggests, in line with earlier studies, that moulting greylag geese combine dietary selection, reduced nitrogen excretion and regrazing patterns to meet protein demands during regrowth of flight feathers. 相似文献