首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   541篇
  免费   31篇
  2023年   3篇
  2022年   5篇
  2021年   15篇
  2020年   11篇
  2019年   9篇
  2018年   6篇
  2017年   8篇
  2016年   15篇
  2015年   22篇
  2014年   24篇
  2013年   44篇
  2012年   44篇
  2011年   38篇
  2010年   24篇
  2009年   27篇
  2008年   32篇
  2007年   23篇
  2006年   30篇
  2005年   33篇
  2004年   35篇
  2003年   23篇
  2002年   25篇
  2001年   8篇
  2000年   2篇
  1999年   6篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   7篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1971年   1篇
  1965年   1篇
排序方式: 共有572条查询结果,搜索用时 62 毫秒
71.

Background

Despite the initial promise of myoblast transfer therapy to restore dystrophin in Duchenne muscular dystrophy patients, clinical efficacy has been limited, primarily by poor cell survival post-transplantation. Murine muscle derived stem cells (MDSCs) isolated from slowly adhering cells (SACs) via the preplate technique, induce greater muscle regeneration than murine myoblasts, primarily due to improved post-transplantation survival, which is conferred by their increased stress resistance capacity. Aldehyde dehydrogenase (ALDH) represents a family of enzymes with important morphogenic as well as oxidative damage mitigating roles and has been found to be a marker of stem cells in both normal and malignant tissue. In this study, we hypothesized that elevated ALDH levels could identify murine and human muscle derived cell (hMDC) progenitors, endowed with enhanced stress resistance and muscle regeneration capacity.

Methodology/Principal Findings

Skeletal muscle progenitors were isolated from murine and human skeletal muscle by a modified preplate technique and unfractionated enzymatic digestion, respectively. ALDHhi subpopulations isolated by fluorescence activate cell sorting demonstrated increased proliferation and myogenic differentiation capacities compared to their ALDHlo counterparts when cultivated in oxidative and inflammatory stress media conditions. This behavior correlated with increased intracellular levels of reduced glutathione and superoxide dismutase. ALDHhi murine myoblasts were observed to exhibit an increased muscle regenerative potential compared to ALDHlo myoblasts, undergo multipotent differentiation (osteogenic and chondrogenic), and were found predominately in the SAC fraction, characteristics that are also observed in murine MDSCs. Likewise, human ALDHhi hMDCs demonstrated superior muscle regenerative capacity compared to ALDHlo hMDCs.

Conclusions

The methodology of isolating myogenic cells on the basis of elevated ALDH activity yielded cells with increased stress resistance, a behavior that conferred increased regenerative capacity of dystrophic murine skeletal muscle. This result demonstrates the critical role of stress resistance in myogenic cell therapy as well as confirms the role of ALDH as a marker for rapid isolation of murine and human myogenic progenitors for cell therapy.  相似文献   
72.
Johnny Kahlert 《Ibis》2003,145(1):E45-E52
During the flightless period of wing-moult, terrestrial feeding waterbirds tend to forage close to water. Wing-moulting Greylag Geese Anser anser feeding in a Danish saltmarsh were no exception to this pattern as none fed more than 175 m from the sea. An individual-based stochastic model of goose feeding distribution derived from empirical data showed that requirements for drinking water could not explain the coastal feeding distribution as the model predicted that 57% of all goose observations would be more than 175 m from the sea. The availability of Common Saltmarsh Grass Puccinellia maritima , the preferred food item, could partly explain the exploitation pattern of geese but not the absence of geese from inland feeding areas. Furthermore, the results did not support the hypothesis that geese actively avoided inland feeding areas because of elevated costs from vigilance. The frequency of anti-predator displacement to the sea was the most likely explanation of the feeding pattern. A model that included such displacements predicted that 99% of all geese would feed less than 175 m from the sea. As anti-predator displacement put the most severe constraints on the feeding distribution, predation risk and level of disturbance were suggested to be the overall factors, which determine the choice of moult site in wing-moulting geese.  相似文献   
73.
The effects of simulated goose grazing on common saltmarsh-grass Puccinellia maritima plants were tested on a Danish salt marsh during the flightless moulting period of greylag geese Anser anser (3–21 June 1998). Plants in an area exclosed from the influence of grazing and the nutrient effects of goose faeces were subject to removal of youngest lamina at 3-, 6-, 9- and 18-day intervals during this period. Average biomass and protein accumulation between harvests was highest at defoliation intervals of 9 days or more. Field observations from two separate study areas demonstrated geese returned to regraze the Puccinellia sward after 6–8 days and oesophageal contents from feeding geese showed selection for lamina lengths consistent with the results of clipping every 6 days. Geese therefore regrazed Puccinellia patches at shorter intervals than expected were they to maximise their intake of biomass or protein at each visit. However, total cumulative lamina elongation, equivalent to the long term gain during the entire moult period, showed no significant difference between the three most intensive defoliation treatments, which were significantly greater than those of plants defoliated at 18 day intervals. Highest overall lamina protein levels were maintained at 6- and 9-day defoliation intervals. This suggests geese regrazed Puccinellia patches at a rate that maximised their number of harvests during the flightless period, but maintained highest protein levels and overall biomass in the sward. This suggests, in line with earlier studies, that moulting greylag geese combine dietary selection, reduced nitrogen excretion and regrazing patterns to meet protein demands during regrowth of flight feathers.  相似文献   
74.
The cytotoxic norditerpene dilactones nagilactone F and its new congener nagilactone G have been isolated from the bark constituents of Podocarpus milanjianus and Podocarpus sellowii. The diterpenes totarol, 19-oxototarol and macrophyllic acid were also isolated.  相似文献   
75.
Retrospective molecular epidemiology was performed on samples from four sooty mangabey (SM) colonies in the United States to characterize simian immunodeficiency virus SIVsm diversity in SMs and to trace virus circulation among different primate centers (PCs) over the past 30 years. The following SIVsm sequences were collected from different monkeys: 55 SIVsm isolates from the Tulane PC sampled between 1984 and 2004, 10 SIVsm isolates from the Yerkes PC sampled in 2002, 7 SIVsm isolates from the New Iberia PC sampled between 1979 and 1986, and 8 SIVsm isolates from the California PC sampled between 1975 and 1977. PCR and sequencing were done to characterize the gag, pol, and env gp36 genes. Phylogenetic analyses were correlated with the epidemiological data. Our analysis identified nine different divergent phylogenetic lineages that cocirculated in these four SM colonies in the Unites States in the past 30 years. Lineages 1 to 5 have been identified previously. Two of the newly identified SIVsm lineages found in SMs are ancestral to SIVmac251/SIVmac239/SIVmne and SIVstm. We further identified the origin of these two macaque viruses in SMs from the California National Primate Research Center. The diversity of SIVsm isolates in PCs in the United States mirrors that of human immunodeficiency virus type 1 (HIV-1) group M subtypes and offers a model for the molecular epidemiology of HIV and a new approach to vaccine testing. The cocirculation of divergent SIVsm strains in PCs resulted in founder effects, superinfections, and recombinations. This large array of SIVsm strains showing the same magnitude of diversity as HIV-1 group M subtypes should be extremely useful for modeling the efficacy of vaccination strategies under the real-world conditions of HIV-1 diversity. The genetic variability of SIVsm strains among PCs may influence the diagnosis and monitoring of SIVsm infection and, consequently, may bias the results of pathogenesis studies.  相似文献   
76.
77.
Plasma low- and high-density lipoproteins (LDL and HDL) are cleared from the circulation by specific receptors and are either totally degraded or their cholesteryl esters (CE) are selectively delivered to cells by receptors such as the scavenger receptor class B type I (SR-BI). The aim of the present study was to define the effect of apoC-II and apoC-III on the uptake of LDL and HDL by HepG2 cells. Stable transformants were obtained with sense or antisense strategies that secrete 47-294% the normal level of apoC-II or 60-200% that of apoC-III. Different levels of secreted apoC-II or apoC-III had little effect on LDL and HDL protein degradation by HepG2 cells. However, compared to controls, cells under-expressing apoC-II showed a 160% higher capacity to selectively take up HDL-CE, while cells under-expressing apoC-III demonstrated 70 and 160% higher capacity to take up CE from LDL and HDL, respectively. In experiments conducted with exogenously added apoC-II or apoC-III, no significant effect was observed on lipoprotein-protein association/degradation; however, LDL-CE and HDL-CE selective uptake was significantly reduced in a dose-dependent manner. These results indicate that apoC-II and apoC-III inhibit CE-selective uptake.  相似文献   
78.
Oxidative stress plays an important role in the progression of neurodegenerative and age-related diseases, causing damage to proteins, DNA, and lipids. A novel thiol N-acetylcysteine amide (AD4), the amide form of N-acetylcysteine (NAC) and a Cu(2+) chelator, was assessed for its antioxidant and protective effects using human red blood cells (RBCs) as a model. AD4 was shown by flow cytometry to inhibit tert.-butylhydroxyperoxide (BuOOH)-induced intracellular oxidation in RBCs stained with the oxidant-sensitive probe 2',7'-dichlorofluorescein diacetate. In addition, AD4 retarded BuOOH-induced thiol depletion and hemoglobin oxidation. Restoration of the thiol-depleted RBCs by externally applied AD4 was significantly greater compared with NAC and, unlike NAC, was accompanied by hemoglobin protection from oxidation. In a cell-free system we have demonstrated that AD4 reacted with oxidized glutathione (GSSG) to generate reduced glutathione (GSH). The formation of GSH was determined enzymatically using GSH peroxidase and by HPLC. Based on these results a thiol-disulfide exchange between AD4 and GSSG is proposed as the mechanism underlying the antioxidant effects of AD4 on BuOOH-treated RBCs. Together, these studies demonstrate that AD4 readily crosses cell membranes, replenishes intracellular GSH, and, by incorporating into the redox machinery, defends the cell from oxidation. These results provide further evidence for the efficient membrane permeation of AD4 over NAC, and support the possibility that it could be explored for treatment of neurodegeneration and other oxidation-mediated disorders.  相似文献   
79.
Large chromosomal events such as translocations and segmental duplications enable rapid adaptation to new environments. Here we marshal genomic, genetic, meiotic mapping, and physical evidence to demonstrate that a chromosomal translocation and segmental duplication occurred during construction of a congenic strain pair in the fungal human pathogen Cryptococcus neoformans. Two chromosomes underwent telomere-telomere fusion, generating a dicentric chromosome that broke to produce a chromosomal translocation, forming two novel chromosomes sharing a large segmental duplication. The duplication spans 62,872 identical nucleotides and generated a second copy of 22 predicted genes, and we hypothesize that this event may have occurred during meiosis. Gene disruption studies of one embedded gene (SMG1) corroborate that this region is duplicated in an otherwise haploid genome. These findings resolve a genome project assembly anomaly and illustrate an example of rapid genome evolution in a fungal genome rich in repetitive elements.  相似文献   
80.
The results of a comparative study of two thermostable (1-->4)-beta-xylan endoxylanases using a multi-technical approach indicate that a GH11 xylanase is more useful than a GH10 xylanase for the upgrading of wheat bran into soluble oligosaccharides. Both enzymes liberated complex mixtures of xylooligosaccharides. 13C NMR analysis provided evidence that xylanases cause the co-solubilisation of beta-glucan, which is a result of cell-wall disassembly. The simultaneous use of both xylanases did not result in a synergistic action on wheat bran arabinoxylans, but instead led to the production of a product mixture whose profile resembled that produced by the action of the GH10 xylanase alone. Upon treatment with either xylanase, the diferulic acid levels in residual bran were unaltered, whereas content in ferulic and p-coumaric acids were unequally decreased. With regard to the major differences between the enzymes, the products resulting from the action of the GH10 xylanase were smaller in size than those produced by the GH11 xylanase, indicating a higher proportion of cleavage sites for the GH10 xylanase. The comparison of the kinetic parameters of each xylanase using various alkali-extractable arabinoxylans indicated that the GH10 xylanase was most active on soluble arabinoxylans. In contrast, probably because GH11 xylanase can better penetrate the cell-wall network, this enzyme was more efficient than the GH10 xylanase in the hydrolysis of wheat bran. Indeed the former enzyme displayed a nearly 2-fold higher affinity and a 6.8-fold higher turnover rate in the presence of this important by-product of the milling industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号