首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   21篇
  国内免费   1篇
  2022年   1篇
  2021年   8篇
  2019年   3篇
  2018年   1篇
  2017年   8篇
  2016年   11篇
  2015年   16篇
  2014年   12篇
  2013年   11篇
  2012年   24篇
  2011年   26篇
  2010年   19篇
  2009年   8篇
  2008年   10篇
  2007年   15篇
  2006年   17篇
  2005年   18篇
  2004年   18篇
  2003年   6篇
  2002年   17篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1981年   1篇
排序方式: 共有269条查询结果,搜索用时 31 毫秒
91.
92.
Plant aerial organs are covered by cuticular waxes, which form a hydrophobic crystal layer that mainly serves as a waterproof barrier. Cuticular wax is a complex mixture of very long chain lipids deriving from fatty acids, predominantly of chain lengths from 26 to 34 carbons, which result from acyl‐CoA elongase activity. The biochemical mechanism of elongation is well characterized; however, little is known about the specific proteins involved in the elongation of compounds with more than 26 carbons available as precursors of wax synthesis. In this context, we characterized the three Arabidopsis genes of the CER2‐like family: CER2, CER26 and CER26‐like . Expression pattern analysis showed that the three genes are differentially expressed in an organ‐ and tissue‐specific manner. Using individual T–DNA insertion mutants, together with a cer2 cer26 double mutant, we characterized the specific impact of the inactivation of the different genes on cuticular waxes. In particular, whereas the cer2 mutation impaired the production of wax components longer than 28 carbons, the cer26 mutant was found to be affected in the production of wax components longer than 30 carbons. The analysis of the acyl‐CoA pool in the respective transgenic lines confirmed that inactivation of both genes specifically affects the fatty acid elongation process beyond 26 carbons. Furthermore, ectopic expression of CER26 in transgenic plants demonstrates that CER26 facilitates the elongation of the very long chain fatty acids of 30 carbons or more, with high tissular and substrate specificity.  相似文献   
93.
Fascin, an actin-bundling protein overexpressed in all carcinomas, has been associated with poor prognosis, shorter survival, and more metastatic diseases. It is believed that fascin facilitates tumor metastasis by promoting the formation of invasive membrane protrusions. However, the mechanisms by which fascin is overexpressed in tumors are not clear. TGFβ is a cytokine secreted by tumor and mesenchymal cells and promotes metastasis in many late stage tumors. The pro-metastasis mechanisms of TGFβ remain to be fully elucidated. Here we demonstrated that TGFβ induced fascin expression in spindle-shaped tumor cells through the canonical Smad-dependent pathway. Fascin was critical for TGFβ-promoted filopodia formation, migration, and invasion in spindle tumor cells. More importantly, fascin expression significantly correlates with TGFβ1 and TGFβ receptor I levels in a cohort of primary breast tumor samples. Our results indicate that elevated TGFβ level in the tumor microenvironment may be responsible for fascin overexpression in some of the metastatic tumors. Our data also suggest that fascin could play a central role in TGFβ-promoted tumor metastasis.  相似文献   
94.
The Coccolithoviridae are a recently discovered group of viruses that infect the marine coccolithophorid Emiliania huxleyi. Emiliania huxleyi virus 203 (EhV-203) has a 160- to 180-nm-diameter icosahedral structure and a genome of approximately 400 kbp, consisting of 464 coding sequences (CDSs). Here we describe the genomic features of EhV-203 together with a draft genome sequence and its annotation, highlighting the homology and heterogeneity of this genome in comparison with the EhV-86 reference genome.  相似文献   
95.
96.
The challenges and opportunities for protecting agricultural production of food and other materials will be met through exploiting the induction of defence pathways in plants to control pests, diseases and weeds. These approaches will involve processes that can be activated by application of natural products, patented in terms of this use, to "switch on" defence pathways. Already, a number of secondary metabolite defence compounds are known for which the pathways are conveniently clustered genomically, e.g. the benzoxazinoids (hydroxamic acids) and the avenacins. For the former, it is shown that the small molecular weight lipophilic activator cis-jasmone can induce production of these compounds and certain genes within the pathway. Numerous groups around the world work on inducible defence systems. The science is rapidly expanding and involves studying the interacting components of defence pathways and the switching mechanisms activated by small molecular weight lipophilic compounds. Examples are described of how plant breeding can exploit these systems and how heterologous gene expression will eventually give rise to a new range of GM crops for food and energy, without the need for external application of synthetic pesticides.  相似文献   
97.
G3139, an antisense Bcl-2 phosphorothioate oligodeoxyribonucleotide, induces apoptosis in melanoma and other cancer cells. This apoptosis happens before and in the absence of the downregulation of Bcl-2 and thus seems to be Bcl-2-independent. Binding of G3139 to mitochondria and its ability to close voltage-dependent anion-selective channel (VDAC) have led to the hypothesis that G3139 acts, in part, by interacting with VDAC channels in the mitochondrial outer membrane (21). In this study, we demonstrate that G3139 is able to reduce the mitochondrial outer membrane permeability to ADP by a factor of 6 or 7 with a Ki between 0.2 and 0.5 µM. Because VDAC is responsible for this permeability, this result strengthens the aforesaid hypothesis. Other mitochondrial respiration components are not affected by [G3139] up to 1 µM. Higher levels begin to inhibit respiration rates, decrease light scattering and increase uncoupled respiration. These results agree with accumulating evidence that VDAC closure favors cytochrome c release. The speed of this effect (within 10 min) places it early in the apoptotic cascade with cytochrome c release occurring at later times. Other phosphorothioate oligonucleotides are also able to induce VDAC closure, and there is some length dependence. The phosphorothioate linkages are required to induce the reduction of outer membrane permeability. At levels below 1 µM, phosphorothioate oligonucleotides are the first specific tools to restrict mitochondrial outer membrane permeability. respiration; voltage-dependent anion-selective channel; apoptosis; cell death  相似文献   
98.
Sphingolipids and their phosphorylated metabolites play crucial roles in intracellular signalling in animals, and evidence is emerging for analogous situations in fungi and plants. Central to this signalling pathway is the phosphorylation of the sphingoid long chain base, sphingosine, which yields sphingosine-1-phosphate. Until recently, the enzyme responsible for the biosynthesis of sphingosine was unknown, but the Delta(4)-long chain base desaturase that carries out this reaction has now been identified. Orthologues are present in animals, plants and fungi, raising the possibility of using reverse genetics to determine the contribution of sphingosine-1-phosphate to signalling networks.  相似文献   
99.
Parasitophorous vacuoles (PV) that harbour Leishmania parasites acquire some characteristics from fusion with host cell vesicles. Recent studies have shown that PVs acquire and display resident endoplasmic reticulum (ER) molecules. We investigated the importance of ER molecules to PV biology by assessing the consequence of blocking the fusion of PVs with vesicles that originate from the early secretory pathway. This was achieved by targeting the N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) that mediate the fusion of early secretory vesicles. In the presence of dominant negative variants of sec22b or some of its known cognate partners, D12 and syntaxin 18, PVs failed to distend and harboured fewer parasites. These observations were confirmed in studies in which each of the SNAREs listed above including the intermediate compartment ER/Golgi SNARE, syntaxin 5, was knocked down. The knock-down of these SNARES had little or no measurable effect on the morphology of the ER or on activated secretion even though they resulted in a more significant reduction of PV size. Moreover, the knock-down of the ER/Golgi SNAREs resulted in significant reduction in parasite replication. Taken together, these studies provide further evidence that PVs acquire ER components by fusing with vesicles derived from the early secretory pathway; disruption of this interaction results in inhibition of the development of PVs as well as the limitation of parasite replication within infected cells.  相似文献   
100.
Previous studies have shown aberrant expression of miR-214 in human malignancy. Elevated miR-214 is associated with chemoresistance and metastasis. In this study, we identified miR-214 regulation of ovarian cancer stem cell (OCSC) properties by targeting p53/Nanog axis. Enforcing expression of miR-214 increases, whereas knockdown of miR-214 decreases, OCSC population and self-renewal as well as the Nanog level preferentially in wild-type p53 cell lines. Furthermore, we found that p53 is directly repressed by miR-214 and that miR-214 regulates Nanog through p53. Expression of p53 abrogated miR-214-induced OCSC properties. These data suggest the critical role of miR-214 in OCSC via regulation of the p53-Nanog axis and miR-214 as a therapeutic target for ovarian cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号