首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77942篇
  免费   6654篇
  国内免费   39篇
  84635篇
  2022年   497篇
  2021年   966篇
  2020年   582篇
  2019年   730篇
  2018年   955篇
  2017年   902篇
  2016年   1487篇
  2015年   2474篇
  2014年   2814篇
  2013年   3845篇
  2012年   4699篇
  2011年   4869篇
  2010年   3206篇
  2009年   2883篇
  2008年   4264篇
  2007年   4365篇
  2006年   4185篇
  2005年   4147篇
  2004年   4233篇
  2003年   3817篇
  2002年   3832篇
  2001年   883篇
  2000年   617篇
  1999年   900篇
  1998年   1196篇
  1997年   861篇
  1996年   792篇
  1995年   764篇
  1994年   741篇
  1993年   687篇
  1992年   627篇
  1991年   601篇
  1990年   580篇
  1989年   614篇
  1988年   530篇
  1987年   511篇
  1986年   458篇
  1985年   593篇
  1984年   744篇
  1983年   638篇
  1982年   760篇
  1981年   795篇
  1980年   720篇
  1979年   499篇
  1978年   557篇
  1977年   529篇
  1976年   525篇
  1975年   402篇
  1974年   499篇
  1973年   452篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
881.
Atmospheric ammonia (NH3) from various anthropogenic sources has become a serious problem for natural vegetation. Ammonia not only causes changes in plant nitrogen metabolism, but also affects the acid-base balance of plants. Using the pH-sensitive fluorescent dyes pyranine and esculin, cytosolic and vacuolar pH changes were measured in leaves of C3 and C4 plants exposed for brief periods to concentrations of NH3 in air ranging from 1.33 to 8.29 mol NH3 · mol-1 gas (0.94–5.86 mg · m-3). After a lag phase, uptake of NH3 from air at a rate of 200 nmol NH3 · m - 2 leaf area · s- 1 into leaves of Zea mays L. increased pyranine fluorescence indicating cytosolic alkalinisation. The increase was much larger in the dark than in the light. In illuminated leaves of the C3 plant Pelargonium zonale L. and the C4 plants Z. mays and Amaranthus caudatus L., NH3-dependent cytosolic alkalinisation was particularly pronounced when CO2 was supplied at very low levels (16 or 20 mol CO2 · mol- 1 gas, containing 210 mmol O2 · mol- 1 gas). An increase in esculin fluorescence, which was smaller than that of pyranine, was indicative of trapping of some of the NH3 in the vacuoles of leaves of Spinacia oleracea L. and Z. mays. Photosynthesis and transpiration remained unchanged during exposure of illuminated leaves to NH3, yielding an influx of 200 nmol NH3 · m-2 leaf area · s-1 for up to 30 min, the longest exposure time used. Both CO2 and O2 influenced the extent of cytosolic alkalinisation. At 500 mol CO2 · mol-1 gas the cytosolic alkalinisation was suppressed more than at 16 or 20 mol CO2 · mol-1 gas. The suppressing effect of CO2 on the NH3induced alkalinisation was larger in illuminated leaves of the C4 plants Z. mays and A. caudatus than in leaves of the C3 plant P. zonale. A reduction of the O2 concentration from 210 to 10 mmol O2 · mol -1 gas, which inhibits photorespiration, increased the NH3induced cytosolic alkalinisation in C3 plants. Suppression by CO2 or O2 of the alkaline pH shift caused by the dissolution and protonation of NH3 in queous leaf compartments, and possibly by the production of organic compounds synthesised from atmospheric NH3, indicates that NH3 which enters leaves is rapidly assimilated if photosynthesis or photorespiration provide nitrogen acceptor molecules.This work was supported by the Biotechnology and Biological Sciences Research Council and the Deutsche Forschungsgemein-schaft within the framework of the research of Sonderforschun-gsbreich 251 of the University of Würzburg. We are grateful to Dr. B. Wollenweber (The Royal Veterinary and Agricultural University, Denmark) for discussions.  相似文献   
882.
Abstract: Baboons are widely used in biomedical research. Although it is widely held that Papio hamadryas breed well in captivity, each established colony has a different reproductive success often hypothesised to be due to husbandry practices. The National Baboon Colony in Australia is a unique colony that houses Papio hamadryas to mimic that structure seen in the wild. In this article; we have analysed their reproductive parameters and neonatal outcomes. The success of the colony husbandry practices was demonstrated by lack of maternal mortality, low foetal morbidity, and known maternal and paternal linage.  相似文献   
883.
884.
885.
Summary Maternally inherited microorganisms that kill male (but not female) progeny are widespread in nature. Three hypotheses have been proposed for the evolution of male-killing microorganisms: inbreeding reduction, release of resources to remaining females and inoculum for horizontal transmission. The sonkiller bacterium,Arsenophonus nasoniae, is a maternally inherited bacterium that causes lethality of male embryos of infected females in the parasitoid wasp,Nasonia vitripennis. In this paper we describe the geographical distribution and frequency of the son-killer bacterium in North American populations ofN. vitripennis andNasonia longicornis. We tested the resource release hypothesis using the body size measurements of infected and uninfected females from natural populations. No evidence was found for a fitness increase of females infected with the bacterium compared to uninfected females. We propose a modification of the existing models, termed the incremental gain hypothesis. According to this model, the bacteria are maintained in host populations due to horizontal transmission and male killing provides an incremental gain in the fitness of infected females relative to females infected with non-male-killing bacteria.  相似文献   
886.
We constructed plasmids encoding the sequences for the bZip modules of c-Jun and c-Fos which could then be expressed as soluble proteins in Escherichia coli. The purified bZip modules were tested for their binding capacities of synthetic oligonucleotides containing either TRE or CRE recognition sites in electrophoretic mobility shift assays and circular dichroism (CD). Electrophoretic mobility shift assays showed that bZip Jun homodimers and bZip Jun/Fos heterodimers bind a collagenase-like TRE (CTGACTCAT) with dissociation constants of respectively 1.4 x 10(-7) M and 5 x 10(-8) M. As reported earlier [Patel et al. (1990) Nature 347, 572-575], DNA binding induces a marked change of the protein structure. However, we found that the DNA also undergoes a conformational change. This is most clearly seen with small oligonucleotides of 13 or 14 bp harboring respectively a TRE (TGACTCA) or a CRE (TGACGTCA) sequence. In this case, the positive DNA CD signal at 280 nm increases almost two-fold with a concomitant blue-shift of 3-4 nm. Within experimental error the same spectral changes are observed for TRE and CRE containing DNA fragments. The spectral changes observed with a non-specific DNA fragment are weaker and the signal of free DNA is recovered upon addition of much smaller salt concentrations than required for a specific DNA fragment. Surprisingly the spectral changes induced by Jun/Jun homodimers are not identical to those induced by Jun/Fos heterodimers. However, in both cases the increase of the positive CD band and the concomitant blue shift would be compatible with a B to A-transition of part of the binding site or a DNA conformation intermediate between the canonical A and B structures.  相似文献   
887.
Gradients in oxygen availability and salinity are among the most important environmental parameters influencing zonation in salt marsh communities. The combined effects of oxygen and salinity on the germination of two salt marsh grasses, Spartina alterniflora and Phragmites australis, were studied in growth chamber experiments. Germination of both species was initiated by emergence of the shoot and completed by root emergence. Percentage S. alterniflora germination was reduced at high salinity (40 g NaCl/L) and in decreased oxygen (5 and 2.5%). In 0% oxygen shoots emerged, but roots did not. P. australis germination was reduced at a lower salinity (25 g NaCl/L) than S. alterniflora, and inhibited at 40 g NaCl/L and in anoxia. However, a combination of hypoxia (10 and 5% O2) and moderate salinity (5 and 10 g NaCl/L) increased P. australis germination. When bare areas in the salt marsh are colonized, the different germination responses of these two species to combinations of oxygen and salt concentrations are important in establishing their initial zonation. In high salinity wetlands S. alterniflora populates the lower marsh and P. australis occupies the high marsh at the upland boundary.  相似文献   
888.
Microtubule-associated proteins (MAPs) regulate microtubule stability and play critical roles in neuronal development and the balance between neuronal plasticity and rigidity. MAP1a (HGMW-approved symbol MAP1A) stabilizes microtubules in postnatal axons. We describe human MAP1a's genomic organization and deduced cDNA and amino acid sequences. MAP1a is a single-copy gene spanning 10.5 kb. MAP1a coding sequence is contained in five exons. Translation begins in exon 3. Human MAP1a contains 2805 amino acids (predicted molecular weight 306.5 kDa) and is slightly larger than rat MAP1a (2774 amino acids). Like rat and bovine MAP1a, human MAP1a contains conserved tubulin binding motifs in the amino-terminal region. The carboxy-terminal portion contains a conserved pentadecapeptide that is present in the light chain portion of rat and bovine MAP1a/LC2 polyprotein. We show that human MAP1a gene expression occurs almost exclusively in the brain and that there is approximately 10-fold greater gene expression in adult brain compared to fetal brain. Strong, interspecies conservation between human and rat MAP1a cDNA and amino acid sequences indicates important relationships between MAP1a's function and its primary amino acid sequence.  相似文献   
889.
890.
A physiological role for paraoxonase (PON1) is still uncertain, but it catalyzes the hydrolysis of toxic organophosphates. Evidence that the human genome contains twoPON1-like genes, designatedPON2andPON3,is presented here. HumanPON1andPON2each have nine exons, and the exon/intron junctions occur at equivalent positions.PON1andPON2genes are both on chromosome 7 in human and on chromosome 6 in the mouse. Turkey and chicken, like most birds, lack paraoxonase activity and are very susceptible to organophosphates. However, they have aPON-like gene with 70% identity with humanPON1, PON2,andPON3.Another unexpected finding is that the deduced amino acid sequences of PON2 in human, mouse, dog, turkey, and chicken and of human PON3 are all missing the amino acid residue 105, which is lysine in human PON1. The expanded number ofPONgenes will have important implications for future experiments designed to discover the individual functions, catalytic properties, and physiological roles of the paraoxonases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号