首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79778篇
  免费   6895篇
  国内免费   39篇
  2022年   500篇
  2021年   970篇
  2020年   592篇
  2019年   755篇
  2018年   957篇
  2017年   903篇
  2016年   1510篇
  2015年   2495篇
  2014年   2802篇
  2013年   3849篇
  2012年   4745篇
  2011年   4886篇
  2010年   3209篇
  2009年   2898篇
  2008年   4309篇
  2007年   4427篇
  2006年   4225篇
  2005年   4180篇
  2004年   4303篇
  2003年   3880篇
  2002年   3876篇
  2001年   984篇
  2000年   708篇
  1999年   983篇
  1998年   1230篇
  1997年   890篇
  1996年   819篇
  1995年   789篇
  1994年   765篇
  1993年   710篇
  1992年   676篇
  1991年   666篇
  1990年   643篇
  1989年   668篇
  1988年   575篇
  1987年   565篇
  1986年   528篇
  1985年   641篇
  1984年   773篇
  1983年   671篇
  1982年   793篇
  1981年   825篇
  1980年   752篇
  1979年   541篇
  1978年   587篇
  1977年   551篇
  1976年   558篇
  1975年   422篇
  1974年   526篇
  1973年   481篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
To investigate the influence of inspiratory lung inflation on the respiratory activities of laryngeal motor nerves, vagally intact decerebrate paralyzed cats were ventilated by a servorespirator in accordance with their own phrenic nerve activity. Records were made of the activities of the phrenic nerve, the superior laryngeal nerve (SLN), the recurrent laryngeal nerve (RLN), and the intralaryngeal branches of the RLN serving the thyroarytenoid (TA) and posterior cricoarytenoid (PCA) muscles. Neural activities were assessed in the steady state at different end-tidal O2 and CO2 concentrations. Transient responses to withholding inspiratory lung inflation and to preventing expiratory lung emptying were also studied. Hypercapnia and hypoxia increased the inspiratory activities of the phrenic nerve, SLN, RLN, and its PCA branch. TA inspiratory activity was not changed. Expiratory activities of RLN, PCA, and TA were all increased in hypoxia. When lung inflation was withheld, neural inspiratory duration and the inspiratory activities of all nerves increased. The subsequent period of neural expiration was marked by an exaggerated burst of activity by the TA branch of the RLN. TA expiratory activity was also sharply increased after inspiratory efforts that were reflexly delayed by the prevention of lung emptying. TA activity in expiration was enhanced after vagotomy and was usually more prominent than when lung inflation was withheld before vagal section. The results demonstrate the importance and complexity of the influence of vagal afferents on laryngeal motor activity.  相似文献   
993.
To distinguish experimentally between motor nerve activity destined for vocal cord abductor muscles and that bound for muscles that adduct the cords, we recorded efferent activities of intralaryngeal branches of the recurrent laryngeal nerve (RLN) in decerebrate, vagotomized, paralyzed, ventilated cats. Activities of the whole RLN and phrenic nerve were also recorded. Nerve activities were assessed at several steady-state end-tidal O2 and CO2 concentrations. The nerve to the thyroarytenoid (TA) muscle, a vocal cord adductor, was only slightly active under base-line (normocapnic, hyperoxic) conditions but in most cats developed strong activity during expiration in hypocapnia or hypoxia. In severe hypocapnia, phasic expiratory TA activity persisted even during phrenic apnea, indicating continuing activity of the respiratory rhythm generator. The nerve to the posterior cricoarytenoid (PCA) muscle, the vocal cord abductor, was always active in inspiration but often showed expiratory activity as well. This expiratory activity was usually enhanced by hypercapnia and often inhibited by hypoxia. The results are consistent with previous electromyographic findings and emphasize the importance of distinguishing abductor from adductor activity in studies of laryngeal control.  相似文献   
994.
995.
996.
997.
Differing activities of medullary respiratory neurons in eupnea and gasping   总被引:1,自引:0,他引:1  
Our purpose was to compare further eupneic ventilatory activity with that of gasping. Decerebrate, paralyzed, and ventilated cats were used; the vagi were sectioned within the thorax caudal to the laryngeal branches. Activities of the phrenic nerve and medullary respiratory neurons were recorded. Antidromic invasion was used to define bulbospinal, laryngeal, or not antidromically activated units. The ventilatory pattern was reversibly altered to gasping by exposure to 1% carbon monoxide in air. In eupnea, activities of inspiratory neurons commenced at various times during inspiration, and for most the discharge frequency gradually increased. In gasping, the peak discharge frequency of inspiratory neurons was unaltered. However, all commenced activities at the start of the phrenic burst and reached peak discharge almost immediately. The discharge frequencies of all groups of expiratory neurons fell in gasping, with many neurons ceasing activity entirely. These data are consistent with the hypothesis that brain stem mechanisms controlling eupnea and gasping differ fundamentally.  相似文献   
998.

Site Specifics

North Carolina State University  相似文献   
999.
Summary The influence of temperature on NO 3 - and NH 4 + uptake, and the activity of the assimilatory enzyme NO 3 - reductase (NR) was compared to inorganic C uptake (photosynthesis) in natural assemblages of Antarctic sea-ice microalgae. NO 3 - and NH 4 + uptake reached a maximum between 0.5°–2.0°C and 2.0°–3.0°C, respectively, which was close to that for photosynthesis (2.5°–3.0°C). NR showed a distinctly higher temperature maximum (10.0°–12.0°C) and a lower Q10 value than inorganic N and C transport. Our data imply that, owing to differential temperature characteristics between N transport and N assimilation at in situ temperature (-1.9°C), the incorporation of extracellular NO 3 - into cellular macromolecules, may be limited by transport of NO 3 - into the cell rather than the intracellular reduction of NO 3 - to NH 4 + . Despite differences in temperature maxima between N transport and N assimilation, the overall low temperature maxima of inorganic N metabolism characterizes Antarctic sea-ice microalgae as psychrophilic. Our study is the first to examine the temperature dependence of inorganic N uptake and assimilation in sea-ice microbial communities.  相似文献   
1000.
Genetic linkage studies have mapped Huntington's disease (HD) to the distal portion of the short arm of chromosome 4 (4p16.3), 4 cM distal to D4S10 (G8). To date, no definite flanking marker has been identified. A new DNA marker, D4S90 (D5), which maps to the distal region of 4p16.3, is described. The marker was used in a genetic linkage study in the CEPH reference families with seven other markers at 4p16. The study, together with knowledge of the physical map of the region, places D4S90 as the most distal marker, 6 cM from D4S10. A provisional linkage study with HD gave a maximum lod score of 2.14 at a θ of 0.00 and no evidence of linkage disequilibrium. As D4S90 appears to be located terminally, it should play an important role in the accurate mapping and cloning of the HD gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号