首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345389篇
  免费   36141篇
  国内免费   291篇
  2018年   3085篇
  2016年   4387篇
  2015年   6460篇
  2014年   7328篇
  2013年   10786篇
  2012年   12051篇
  2011年   12486篇
  2010年   8220篇
  2009年   7541篇
  2008年   11182篇
  2007年   11428篇
  2006年   10832篇
  2005年   10570篇
  2004年   10616篇
  2003年   9971篇
  2002年   9772篇
  2001年   12535篇
  2000年   12336篇
  1999年   10115篇
  1998年   4470篇
  1997年   4381篇
  1996年   4234篇
  1995年   3821篇
  1994年   3798篇
  1993年   3738篇
  1992年   8435篇
  1991年   8403篇
  1990年   8046篇
  1989年   8023篇
  1988年   7339篇
  1987年   7061篇
  1986年   6447篇
  1985年   6739篇
  1984年   5805篇
  1983年   4918篇
  1982年   4063篇
  1981年   3860篇
  1980年   3596篇
  1979年   5397篇
  1978年   4319篇
  1977年   4200篇
  1976年   3907篇
  1975年   4150篇
  1974年   4627篇
  1973年   4513篇
  1972年   3921篇
  1971年   3686篇
  1970年   3348篇
  1969年   3249篇
  1968年   2952篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
961.
The numbers, types, and distributions of neurons in a hypostome of Hydra littoralis were determined from electron micrographs of serial (0.25 μm thick) sections. In 1,080 serial sections examined we found 75 sensory cells and 949 centrally located ganglion cells. More than 96% of the 1,024 neurons identified had a single cilium. Sensory cells were most numerous near the apex of the hypostome. Proceeding away from the apex, they steadily decreased in numbers; at 120 μm they were no longer observed. Ganglion cells were bimodally distributed; some were associated with sensory cells at the apex, but most were found at the sites of tentacle origin. We observed, throughout the hypostome, a total of 64 neuronal clusters (three or more contiguous neurons), with an average of five and a maximum of 11 neurons in a cluster. Clusters were distributed similarly to ganglion cells: an initial concentration of clusters near the apex; the majority at the hypostometentacle junctions. Each neuron identified was traced through succeeding sections in which it was observed. We used a three coordinate system to create a three-dimensional reconstruction of the neuronal locations in the hypostome. Although the functional significance of the neuronal distributions we observed is unknown, we suggest that neurons at the apex of the hypostome transduce sensory information involved in feeding behavior. The neuronal concentrations at sites of tentacle origin may be responsible for initiating Contraction Burst Pulses associated with rhythmic behavioral patterns of Hydra or coordinating tentacle movements involved in prey capture, ingestion or locomotion.  相似文献   
962.
Studies in rodents indicate that diets deficient in omega-3 polyunsaturated fatty acids (n–3 PUFA) lower dopamine neurotransmission as measured by striatal vesicular monoamine transporter type 2 (VMAT2) density and amphetamine-induced dopamine release. This suggests that dietary supplementation with fish oil might increase VMAT2 availability, enhance dopamine storage and release, and improve dopamine-dependent cognitive functions such as working memory. To investigate this mechanism in humans, positron emission tomography (PET) was used to measure VMAT2 availability pre- and post-supplementation of n–3 PUFA in healthy individuals. Healthy young adult subjects were scanned with PET using [11C]-(+)-α-dihydrotetrabenzine (DTBZ) before and after six months of n–3 PUFA supplementation (Lovaza, 2 g/day containing docosahexaenonic acid, DHA 750 mg/d and eicosapentaenoic acid, EPA 930 mg/d). In addition, subjects underwent a working memory task (n-back) and red blood cell membrane (RBC) fatty acid composition analysis pre- and post-supplementation. RBC analysis showed a significant increase in both DHA and EPA post-supplementation. In contrast, no significant change in [11C]DTBZ binding potential (BPND) in striatum and its subdivisions were observed after supplementation with n–3 PUFA. No correlation was evident between n–3 PUFA induced change in RBC DHA or EPA levels and change in [11C]DTBZ BPND in striatal subdivisions. However, pre-supplementation RBC DHA levels was predictive of baseline performance (i.e., adjusted hit rate, AHR on 3-back) on the n-back task (y = 0.19+0.07, r2 = 0.55, p = 0.009). In addition, subjects AHR performance improved on 3-back post-supplementation (pre 0.65±0.27, post 0.80±0.15, p = 0.04). The correlation between n-back performance, and DHA levels are consistent with reports in which higher DHA levels is related to improved cognitive performance. However, the lack of change in [11C]DBTZ BPND indicates that striatal VMAT2 regulation is not the mechanism of action by which n–3 PUFA improves cognitive performance.  相似文献   
963.
964.
965.
966.
967.
968.
969.
970.
Cyclosporine A (CyA) nephorotoxicity is associated with impaired renal hemodynamic funtion and increased production of the vasoconstrictor eicosanoid thromboxane A2 (TxA2). In CyA toxic rats, renal dysfunction cna be partially reversed by inhibitors of thromoboxane sysnthase. However, interpretation of these results is complicated since inhibitance of thromboxane synthase may cause accumulation of prostaglandin endoperoxides that can act as partial agonists at the TxA2 receptor and may blunt the efficacy of treatment. Furthermore, these endoperoxides may be used as substrate for production of vasodilator prostaglandins causing beneficial effects on hemodynamics which are independent of thromboxane inhibition. To more specially examine the role of TxA2 in CyA toxicity, we investigated the effects of the thromboxane receptor antagonist GR32191 on renal hemodynamics in a rat model of CyA nephrotoxicity. In this model, administration of CyA resulted in a significant decrease in glomerular filtration rate (GFR) 2.85±0.26 [CyA] vs 6.82±0.96 ml/min/kg [vehicle]; p<0.0005) and renal blood flow (RBF) (21.6±2.31 [CyA] vs 31.8±3.60 ml/min/kg [vehicle]; p<0.025). Renal vascular resistance (RVR) was significantly higher in rats given CyA compared to animals treated with CyA vehicle (5.32±0.55 [cyCyA] vs 3.54±0.24 mm Hg/min/ml/kg [vehicle]; p<0.05). These hemodynamic alterations were associated with a significant increase in urinary excretion of unmetabolized, “native” thromboxane B2 (TxB2 (103±18 [CyA] vs 60±16 pg/hour [vehicle]; p<0.05). Only minimal histomorphologic changes were apparent by light microscopic examination of kidneys from both CyA and vehicle treated animals. However, with immunoperoxidase staining, a significantly greater number of cells experssing the rat common leukocyte antigen was found in the renal interstitium of rats given CyA*. There was no detectable increase in monocytes/macrophages in the kidneys of CyA toxic animals. In rats treated with CyA, intraarterial infusion of GR32191 at maximally tolerated doses significanlty increased GFR and RBD, and decreased RVR. Although both RBF and RVR were restored to levels not different from controls, GFR remained significantly reduced following administration of GR32191. These data suggest that the potent vasoconstrictor TxA2 plays an important role in mediating renal dysfunction in CyA nephrotoxicity. However, other factors may be important in producing nephrotoxicity associated with CyA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号