首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85148篇
  免费   7359篇
  国内免费   131篇
  2022年   618篇
  2021年   1116篇
  2020年   672篇
  2019年   852篇
  2018年   1069篇
  2017年   1005篇
  2016年   1684篇
  2015年   2826篇
  2014年   3139篇
  2013年   4248篇
  2012年   5237篇
  2011年   5350篇
  2010年   3490篇
  2009年   3155篇
  2008年   4626篇
  2007年   4703篇
  2006年   4521篇
  2005年   4430篇
  2004年   4492篇
  2003年   4055篇
  2002年   4023篇
  2001年   1104篇
  2000年   836篇
  1999年   1071篇
  1998年   1265篇
  1997年   911篇
  1996年   852篇
  1995年   816篇
  1994年   781篇
  1993年   742篇
  1992年   744篇
  1991年   695篇
  1990年   675篇
  1989年   720篇
  1988年   605篇
  1987年   591篇
  1986年   545篇
  1985年   680篇
  1984年   804篇
  1983年   699篇
  1982年   806篇
  1981年   839篇
  1980年   765篇
  1979年   575篇
  1978年   618篇
  1977年   571篇
  1976年   571篇
  1975年   438篇
  1974年   540篇
  1973年   491篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
182.
We examined the role of the orphan nuclear hormone receptor CoupTFI in mediating cortical development downstream of meningeal retinoic acid signaling. CoupTFI is a regulator of cortical development known to collaborate with retinoic acid (RA) signaling in other systems. To examine the interaction of CoupTFI and cortical RA signaling we utilized Foxc1-mutant mice in which defects in meningeal development lead to alterations in cortical development due to a reduction of RA signaling. By analyzing CoupTFI−/−;Foxc1H/L double mutant mice we provide evidence that CoupTFI is required for RA rescue of the ventricular zone and the neurogenic phenotypes in Foxc1-mutants. We also found that overexpression of CoupTFI in Foxc1-mutants is sufficient to rescue the Foxc1-mutant cortical phenotype in part. These results suggest that CoupTFI collaborates with RA signaling to regulate both cortical ventricular zone progenitor cell behavior and cortical neurogenesis.  相似文献   
183.
In social environments, decisions not only determine rewards for oneself but also for others. However, individual differences in pro-social behaviors have been typically studied through self-report. We developed a decision-making paradigm in which participants chose from card decks with differing rewards for themselves and charity; some decks gave similar rewards to both, while others gave higher rewards for one or the other. We used a reinforcement-learning model that estimated each participant''s relative weighting of self versus charity reward. As shown both in choices and model parameters, individuals who showed relatively better learning of rewards for charity – compared to themselves – were more likely to engage in pro-social behavior outside of a laboratory setting indicated by self-report. Overall rates of reward learning, however, did not predict individual differences in pro-social tendencies. These results support the idea that biases toward learning about social rewards are associated with one''s altruistic tendencies.  相似文献   
184.
Hepatitis C virus (HCV) co-opts hepatic lipid pathways to facilitate its pathogenesis. The virus alters cellular lipid biosynthesis and trafficking, and causes an accumulation of lipid droplets (LDs) that gives rise to hepatic steatosis. Little is known about how these changes are controlled at the molecular level, and how they are related to the underlying metabolic states of the infected cell. The HCV core protein has previously been shown to independently induce alterations in hepatic lipid homeostasis. Herein, we demonstrate, using coherent anti-Stokes Raman scattering (CARS) microscopy, that expression of domain 2 of the HCV core protein (D2) fused to GFP is sufficient to induce an accumulation of larger lipid droplets (LDs) in the perinuclear region. Additionally, we performed fluorescence lifetime imaging of endogenous reduced nicotinamide adenine dinucleotides [NAD(P)H], a key coenzyme in cellular metabolic processes, to monitor changes in the cofactor’s abundance and conformational state in D2-GFP transfected cells. When expressed in Huh-7 human hepatoma cells, we observed that the D2-GFP induced accumulation of LDs correlated with an increase in total NAD(P)H fluorescence and an increase in the ratio of free to bound NAD(P)H. This is consistent with an approximate 10 fold increase in cellular NAD(P)H levels. Furthermore, the lifetimes of bound and free NAD(P)H were both significantly reduced – indicating viral protein-induced alterations in the cofactors’ binding and microenvironment. Interestingly, the D2-expressing cells showed a more diffuse localization of NAD(P)H fluorescence signal, consistent with an accumulation of the co-factor outside the mitochondria. These observations suggest that HCV causes a shift of metabolic control away from the use of the coenzyme in mitochondrial electron transport and towards glycolysis, lipid biosynthesis, and building of new biomass. Overall, our findings demonstrate that HCV induced alterations in hepatic metabolism is tightly linked to alterations in NAD(P)H functional states.  相似文献   
185.
A hypothesis is presented that the availability of water for export of nitrogenous products from legume nodules is a major factor limiting the efficiency of symbiotic nitrogen fixation. Water for export of solutes in the xylem probably depends largely on the import of water and reduced carbon in the phloeum, and one function of respiration may be to dispose of reduced carbon in order to increase the supply of water. A second hypothesis presented is that control of gas diffusion in soybean nodules is largely restricted to the cortex nearby the vascular bundles, thus making possible the linkage of solute balances in xylem and phloem with resistance to diffusion. These concepts are used in a re-examination of literature on manipulations of nodules and nodulated plants such as lowering of light levels, water stress, defoliation, stem girdling, and alteration of oxygen supply. The concept of translocation as a major factor limiting efficiency of symbiotic fixation is consistent with the failure of superior rhizobial isolates to improve N input significantly, and this limitation could also prevent exploitation of superior bacterial symbionts in the future  相似文献   
186.
Leuconostoc (Lc.) mesenteroides TA33a produced three bacteriocins with different inhibitory activity spectra. Bacteriocins were purified by adsorption/desorption from producer cells and reverse phase high-performance liquid chromatography. Leucocin C-TA33a, a novel bacteriocin with a predicted molecular mass of 4598 Da, inhibited Listeria and other lactic acid bacteria (LAB). Leucocin B-TA33a has a predicted molecular mass of 3466 Da, with activity against Leuconostoc/Weissella (W.) strains, and appears similar to mesenterocin 52B and dextranicin 24, while leucocin A-TA33a, which also inhibited Listeria and other LAB strains, is identical to leucocin A-UAL 187. A survey of other known bacteriocin-producing Leuconostoc/Weissella strains for the presence of the three different bacteriocins revealed that production of leucocin A-, B- and C-type bacteriocins was widespread. Lc. carnosum LA54a, W. paramesenteroides LA7a, and Lc. gelidum UAL 187-22 produced all three bacteriocins, whereas W. paramesenteroides OX and Lc. carnosum TA11a produced only leucocin A- and B-type bacteriocins. Received: 11 April 1997 / Accepted: 10 June 1997  相似文献   
187.
188.
Drosophila DBT and vertebrate CKIε/δ phosphorylate the period protein (PER) to produce circadian rhythms. While the C termini of these orthologs are not conserved in amino acid sequence, they inhibit activity and become autophosphorylated in the fly and vertebrate kinases. Here, sites of C-terminal autophosphorylation were identified by mass spectrometry and analysis of DBT truncations. Mutation of 6 serines and threonines in the C terminus (DBTC/ala) prevented autophosphorylation-dependent DBT turnover and electrophoretic mobility shifts in S2 cells. Unlike the effect of autophosphorylation on CKIδ, DBT autophosphorylation in S2 cells did not reduce its in vitro activity. Moreover, overexpression of DBTC/ala did not affect circadian behavior differently from wild-type DBT (DBTWT), and neither exhibited daily electrophoretic mobility shifts, suggesting that DBT autophosphorylation is not required for clock function. While DBTWT protected S2 cells and larvae from UV-induced apoptosis and was phosphorylated and degraded by the proteasome, DBTC/ala did not protect and was not degraded. Finally, we show that the HSP-90 cochaperone spaghetti protein (SPAG) antagonizes DBT autophosphorylation in S2 cells. These results suggest that DBT autophosphorylation regulates cell death and suggest a potential mechanism by which the circadian clock might affect apoptosis.  相似文献   
189.
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号