首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6236篇
  免费   429篇
  国内免费   2篇
  6667篇
  2023年   24篇
  2022年   69篇
  2021年   121篇
  2020年   69篇
  2019年   86篇
  2018年   122篇
  2017年   118篇
  2016年   173篇
  2015年   285篇
  2014年   263篇
  2013年   396篇
  2012年   475篇
  2011年   477篇
  2010年   307篇
  2009年   248篇
  2008年   366篇
  2007年   330篇
  2006年   318篇
  2005年   311篇
  2004年   265篇
  2003年   269篇
  2002年   224篇
  2001年   120篇
  2000年   113篇
  1999年   86篇
  1998年   59篇
  1997年   48篇
  1996年   58篇
  1995年   55篇
  1994年   47篇
  1993年   51篇
  1992年   71篇
  1991年   52篇
  1990年   41篇
  1989年   37篇
  1988年   35篇
  1987年   39篇
  1986年   32篇
  1985年   36篇
  1984年   39篇
  1983年   29篇
  1982年   27篇
  1981年   17篇
  1980年   18篇
  1979年   21篇
  1977年   22篇
  1976年   23篇
  1974年   41篇
  1973年   17篇
  1972年   16篇
排序方式: 共有6667条查询结果,搜索用时 0 毫秒
201.
Barley is described to mostly use sucrose for night carbon requirements. To understand how the transient carbon is accumulated and utilized in response to cold, barley plants were grown in a combination of cold days and/or nights. Both daytime and night cold reduced growth. Sucrose was the main carbohydrate supplying growth at night, representing 50–60% of the carbon consumed. Under warm days and nights, starch was the second contributor with 26% and malate the third with 15%. Under cold nights, the contribution of starch was severely reduced, due to an inhibition of its synthesis, including under warm days, and malate was the second contributor to C requirements with 24–28% of the total amount of carbon consumed. We propose that malate plays a critical role as an alternative carbon source to sucrose and starch in barley. Hexoses, malate, and sucrose mobilization and starch accumulation were affected in barley elf3 clock mutants, suggesting a clock regulation of their metabolism, without affecting growth and photosynthesis however. Altogether, our data suggest that the mobilization of sucrose and malate and/or barley growth machinery are sensitive to cold.  相似文献   
202.
To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein–DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural location within the rDNA. We discover a pivotal role for the MRX (Mre11, Rad50, Xrs2) complex for fork integrity at RFBs, which differs from its acknowledged function in double-strand break processing. Consequently, in the absence of the MRX complex, single-stranded DNA (ssDNA) accumulates at the rDNA. Based on this, we propose a model where the MRX complex specifically protects stalled forks at protein–DNA barriers, and its absence leads to processing resulting in ssDNA. To our surprise, this ssDNA does not trigger a checkpoint response. Intriguingly, however, placing RFBs ectopically on chromosome VI provokes a strong Rad53 checkpoint activation in the absence of Mre11. We demonstrate that proper checkpoint signalling within the rDNA is restored on deletion of SIR2. This suggests the surprising and novel concept that chromatin is an important player in checkpoint signalling.  相似文献   
203.

Background

Chronic exposure to hyperglycaemic conditions has been shown to have detrimental effects on beta cell function. The resulting glucotoxicity is a contributing factor to the development of type 2 diabetes. The objective of this study was to combine a metabolomics approach with functional assays to gain insight into the mechanism by which glucotoxicity exerts its effects.

Methods

The BRIN-BD11 and INS-1E beta cell lines were cultured in 25 mM glucose for 20 h to mimic glucotoxic effects. PDK-2 protein expression, intracellular glutathione levels and the change in mitochondrial membrane potential and intracellular calcium following glucose stimulation were determined. Metabolomic analysis of beta cell metabolite extracts was performed using GC–MS, 1H NMR and 13C NMR.

Results

Conditions to mimic glucotoxicity were established and resulted in no loss of cellular viability in either cell line while causing a decrease in insulin secretion. Metabolomic analysis of beta cells following exposure to high glucose revealed a change in amino acids, an increase in glucose and a decrease in phospho-choline, n−3 and n−6 PUFAs during glucose stimulated insulin secretion relative to cells cultured under control conditions. However, no changes in calcium handling or mitochondrial membrane potential were evident.

Conclusions

Results indicate that a decrease in TCA cycle metabolism in combination with an alteration in fatty acid composition and phosphocholine levels may play a role in glucotoxicity induced impairment of glucose stimulated insulin secretion.

General significance

Alterations in certain metabolic pathways play a role in glucotoxicity in the pancreatic beta cell.  相似文献   
204.
205.
Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. Genetic polymorphisms in the 3′UTR region of the CXCL12 (rs1801157) and TP53 codon 72 (rs1042522) genes may contribute to susceptibility to childhood ALL because they affect some important processes, such as metastasis regulation and tumor suppression. Thus the objective of the present study was to detect the frequency of two genetic polymorphisms in ALL patients and controls and to add information their impact on genetic susceptibility and prognosis. The CXCL12 and TP53 polymorphisms were tested in 54 ALL child patients and in 58 controls by restriction fragment length polymerase chain reaction and allelic specific chain reaction techniques, respectively. The frequencies of both allelic variants were higher in ALL patients than in the controls and indicated a positive association: OR = 2.44; 95 % CI 1.05–5.64 for CXCL12 and OR = 2.20; 95 % CI 1.03–4.70 for TP53. Furthermore, when the two genetic variants were analyzed together, they increased significantly more than fivefold the risk of this neoplasia development (OR = 5.24; 95 % CI 1.39–19.75), indicating their potential as susceptibility markers for ALL disease and the relevance of the allelic variant combination to increased risk of developing malignant tumors. Future studies may indicate a larger panel of genes involved in susceptibility of childhood ALL and other hematological neoplasias.  相似文献   
206.
BRCA1 and BRCA2 are two major genes associated with familial breast and ovarian cancer susceptibility. In Poland standard BRCA gene test is usually limited to Polish founder BRCA1 mutations: 5382insC, C61G and 4153delA. To date, just a few single large genomic rearrangements (LGRs) of BRCA1 gene have been reported in Poland. Here we report the first comprehensive analysis of large mutations in BRCA1 and BRCA2 genes in this country. We screened LGRs in BRCA1 and BRCA2 genes by multiplex ligation-dependent probe amplification in 200 unrelated patients with strong family history of breast/ovarian cancers and negative for BRCA1 Polish founder mutations. We identified three different LGRs in BRCA1 gene: exons 13-19 deletion, exon 17 deletion and exon 22 deletion. No LGR was detected in BRCA2 genes. Overall, large rearrangements accounted for 3.7 % of all BRCA1 mutation positive families in our population and 1.5 % in high-risk families negative for Polish founder mutation.  相似文献   
207.
208.
It is well known that proprioception is composed of the senses of movement and position. Whereas tests of position sense are quite commonly used, tests of the acuity in perception of movement velocity are scarce. In the present study we examined some novel tests for assessing the sense of limb movement velocity, involving replication and discrimination of single-joint movement velocity. Specifically, we investigated: (1) whether replication of limb movement velocity is more accurate following active criterion movements as compared to passive; (2) whether antagonist muscle contraction during passive limb movement enhances velocity discrimination; (3) how criterion movement velocity influences response accuracy; (4) the relationship between movement velocity and movement extent during velocity replication; and (5) whether subjects really base discrimination of velocities on perceived velocity. Sixteen healthy subjects participated in four tests (I-IV). For each test, horizontal abductions were performed about the right glenohumeral joint from the sagittal plane. The subjects were required to actively replicate the velocity of either an active (Test I) or passive (Test II) criterion movement, or judge whether a passive/semipassive (passive during antagonist muscle contraction) movement was faster or slower than a previous passive/semipassive criterion movement (Test III/IV). The results revealed higher response accuracy for Test I compared to Test II and for slower movements compared to faster, but no difference in response accuracy between Test III and IV. For velocity discrimination, the analysis revealed that the subjects based their judgment on the difference between criterion and comparison velocity rather than time or extent cues.  相似文献   
209.
Breast milk samples collected from 18 nursing mothers between the 15th and 90th day of lactation were digested in nitric acid in a microwave, and total mercury (THg) levels were quantified by atomic fluorescence spectrometry. Participants responded to a 24-h dietary recall questionnaire on the 74th and 76th day of lactation and to a Food Frequency Questionnaire querying the frequency of fish intake over the last 90 days. Usual intake was estimated using the PC-SIDE software package. A meal of fish was offered on the 75th day of lactation. Mothers’ individual mean THg levels ranged from <0.76 to 22.7 ng/mL during the period, and the mean level for all samples (n?=?142) was 6.47?±6.04 ng/mL. The multilevel mixed linear model used showed high heterogeneity of the mercury levels among the mothers, and THg levels did not change significantly over the period under study. However, a significant increase in THg levels was observed after the intervention with the fish meal. Exposure increased for most infants on the 90th day of lactation, with intakes exceeding the THg provisional tolerable weekly intake (PTWI) at least once during the period for 77.8 % of samples. Mothers consumed mostly food from the fat and grain groups, and a significant correlation was detected between consumption of food of these groups and breast milk THg levels (p?=?0.006 and 0.007). A significant correlation was also found between vegetable consumption and carbohydrate intake and THg levels in the samples (p?=?0.015 and 0.045, respectively). No correlation was found between mothers’ daily fish consumption frequency and THg levels. Although this study showed that mercury intake by infants during lactation may exceed the toxicologically safe exposure level (PTWI), we nevertheless believe that the benefits of lactation for both the mother and the infant outweigh the eventual risks that this exposure may represent.  相似文献   
210.
SUMOylation (small ubiquitin‐like modifier conjugation) is an important post‐translational modification which is becoming increasingly implicated in the altered protein dynamics associated with brain ischemia. The function of SUMOylation in cells undergoing ischemic stress and the identity of small ubiquitin‐like modifier (SUMO) targets remain in most cases unknown. However, the emerging consensus is that SUMOylation of certain proteins might be part of an endogenous neuroprotective response. This review brings together the current understanding of the underlying mechanisms and downstream effects of SUMOylation in brain ischemia, including processes such as autophagy, mitophagy and oxidative stress. We focus on recent advances and controversies regarding key central nervous system proteins, including those associated with the nucleus, cytoplasm and plasma membrane, such as glucose transporters (GLUT1, GLUT4), excitatory amino acid transporter 2 glutamate transporters, K+ channels (K2P1, Kv1.5, Kv2.1), GluK2 kainate receptors, mGluR8 glutamate receptors and CB1 cannabinoid receptors, which are reported to be SUMO‐modified. A discussion of the roles of these molecular targets for SUMOylation could play following an ischemic event, particularly with respect to their potential neuroprotective impact in brain ischemia, is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号