首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6406篇
  免费   473篇
  国内免费   5篇
  6884篇
  2023年   42篇
  2022年   69篇
  2021年   139篇
  2020年   86篇
  2019年   111篇
  2018年   146篇
  2017年   114篇
  2016年   209篇
  2015年   335篇
  2014年   399篇
  2013年   414篇
  2012年   574篇
  2011年   475篇
  2010年   339篇
  2009年   268篇
  2008年   338篇
  2007年   380篇
  2006年   284篇
  2005年   324篇
  2004年   286篇
  2003年   247篇
  2002年   222篇
  2001年   59篇
  2000年   38篇
  1999年   56篇
  1998年   81篇
  1997年   54篇
  1996年   52篇
  1995年   54篇
  1994年   36篇
  1993年   36篇
  1992年   37篇
  1991年   27篇
  1990年   24篇
  1989年   23篇
  1988年   25篇
  1987年   27篇
  1986年   20篇
  1985年   25篇
  1984年   31篇
  1983年   14篇
  1982年   28篇
  1981年   20篇
  1980年   14篇
  1979年   16篇
  1978年   17篇
  1977年   22篇
  1976年   19篇
  1975年   17篇
  1974年   14篇
排序方式: 共有6884条查询结果,搜索用时 0 毫秒
71.
Background: Anoxic brain injury is the primary cause of death after resuscitation from out-of-hospital cardiac arrest (OHCA) and prognostication is challenging. The aim of this study was to evaluate the potential of two fragments of tau as serum biomarkers for neurological outcome.

Methods: Single-center sub-study of 171 patients included in the Target Temperature Management (TTM) Trial randomly assigned to TTM at 33?°C or TTM at 36?°C for 24?h after OHCA. Fragments (tau-A and tau-C) of the neuronal protein tau were measured in serum 24, 48 and 72?h after OHCA. The primary endpoint was neurological outcome.

Results: Median (quartile 1 – quartile 3) tau-A (ng/ml) values were 58 (43–71) versus 51 (43–67), 72 (57–84) versus 71 (59–82) and 76 (61–92) versus 75 (64–89) for good versus unfavourable outcome at 24, 48 and 72?h, respectively (pgroup = 0.95). Median tau C (ng/ml) values were 38 (29–50) versus 36 (29–49), 49 (38–58) versus 48 (33–59) and 48 (39–59) versus 48 (36–62) (pgroup = 0.95). Tau-A and tau-C did not predict neurological outcome (area under the receiver-operating curve at 48?h; tau-A: 0.51 and tau-C: 0.51).

Conclusions: Serum levels of tau fragments were unable to predict neurological outcome after OHCA.  相似文献   

72.
73.

Background

Because mitochondria play an essential role in energy metabolism, generation of reactive oxygen species (ROS), and apoptosis, sequence variation in the mitochondrial genome has been postulated to be a contributing factor to the etiology of multifactorial age-related diseases, including cancer. The aim of the present study was to compare the frequencies of mitochondrial DNA (mtDNA) haplogroups as well as control region (CR) polymorphisms of patients with malignant melanoma (n = 351) versus those of healthy controls (n = 1598) in Middle Europe.

Methodology and Principal Findings

Using primer extension analysis and DNA sequencing, we identified all nine major European mitochondrial haplogroups and known CR polymorphisms. The frequencies of the major mitochondrial haplogroups did not differ significantly between patients and control subjects, whereas the frequencies of the one another linked CR polymorphisms A16183C, T16189C, C16192T, C16270T and T195C were significantly higher in patients with melanoma compared to the controls. Regarding clinical characteristics of the patient cohort, none of the nine major European haplogroups was associated with either Breslow thickness or distant metastasis. The CR polymorphisms A302CC-insertion and T310C-insertion were significantly associated with mean Breslow thickness, whereas the CR polymorphism T16519C was associated with metastasis.

Conclusions and Significance

Our results suggest that mtDNA variations could be involved in melanoma etiology and pathogenesis, although the functional consequence of CR polymorphisms remains to be elucidated.  相似文献   
74.
The proprotein convertase PCSK9 gene is the third locus implicated in familial hypercholesterolemia, emphasizing its role in cardiovascular diseases. Loss of function mutations and gene disruption of PCSK9 resulted in a higher clearance of plasma low density lipoprotein cholesterol, likely due to a reduced degradation of the liver low density lipoprotein receptor (LDLR). In this study, we show that two of the closest family members to LDLR are also PCSK9 targets. These include the very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) implicated in neuronal development and lipid metabolism. Our results show that wild type PCSK9 and more so its natural gain of function mutant D374Y can efficiently degrade the LDLR, VLDLR, and ApoER2 either following cellular co-expression or re-internalization of secreted human PCSK9. Such PCSK9-induced degradation does not require its catalytic activity. Membrane-bound PCSK9 chimeras enhanced the intracellular targeting of PCSK9 to late endosomes/lysosomes and resulted in a much more efficient degradation of the three receptors. We also demonstrate that the activity of PCSK9 and its binding affinity on VLDLR and ApoER2 does not depend on the presence of LDLR. Finally, in situ hybridization show close localization of PCSK9 mRNA expression to that of VLDLR in mouse postnatal day 1 cerebellum. Thus, this study demonstrates a more general effect of PCSK9 on the degradation of the LDLR family that emphasizes its major role in cholesterol and lipid homeostasis as well as brain development.  相似文献   
75.
Perennial species with the C(4) pathway hold promise for biomass-based energy sources. We have explored the extent that CO(2) uptake of such species may be limited by light in a temperate climate. One energetic cost of the C(4) pathway is the leakiness () of bundle sheath tissues, whereby a variable proportion of the CO(2), concentrated in bundle sheath cells, retrodiffuses back to the mesophyll. In this study, we scale from leaf to canopy level of a Miscanthus crop (Miscanthus x giganteus hybrid) under field conditions and model the likely limitations to CO(2) fixation. At the leaf level, measurements of photosynthesis coupled to online carbon isotope discrimination showed that leaves within a 3.3-m canopy (leaf area index = 8.3) show a progressive increase in both carbon isotope discrimination and as light decreases. A similar increase was observed at the ecosystem scale when we used eddy covariance net ecosystem CO(2) fluxes, together with isotopic profiles, to partition photosynthetic and respiratory isotopic flux densities (isofluxes) and derive canopy carbon isotope discrimination as an integrated proxy for at the canopy level. Modeled values of canopy CO(2) fixation using leaf-level measurements of suggest that around 32% of potential photosynthetic carbon gain is lost due to light limitation, whereas using determined independently from isofluxes at the canopy level the reduction in canopy CO(2) uptake is estimated at 14%. Based on these results, we identify as an important limitation to CO(2) uptake of crops with the C(4) pathway.  相似文献   
76.
77.
78.
Cross‐border studies offer unique situations to study the impact of different land‐use regimes on ecosystems. Along the Angolan and Namibian border formed by the Okavango River, the environmental conditions and traditional land‐use practises are the same on either side of the river. However, decades of civil war in Angola led to a stagnant development while political stability in Namibia fostered a recent socio‐economic transformation. We investigated the impact of spatially diffuse land use on plant diversity of the dry tropical woodlands covering the vast, sandy hinterlands of the river. As accessibility is the major factor governing land use, we used distance to road as a proxy for land‐use intensity. Based on 58 vegetation plots sized 20 m × 50 m, we showed that species richness increased with distance to road in Angola while in Namibia it remained constant on a lower level. Evenness showed an inverse pattern to species richness and Shannon diversity index showed no response. Analysing diversity patterns according to life forms revealed that these patterns are primarily driven by woody species. The study showed that spatially diffuse land use has a measurable effect on plant diversity and illustrates that roads act as vectors of change.  相似文献   
79.
The major climatic oscillations that characterized the Quaternary had a great influence on the evolution and distribution of several species. During cold periods, the distribution of temperate‐adapted species became fragmented with many surviving in southern refugia (Iberian, Italian, and Balkan Peninsulas). Red deer was one of the species that contracted its original range to southern refugia. Currently, two main lineages have been described for the species: western and eastern. We have analyzed fossils pre‐dating the last glacial maximum (LGM) from Liñares cave (NW Spain) that belongs to the peripheral range of the western clade, and fossils from the Danish Holocene belonging to the central part of the same clade. Phylogenetic analyses place our samples in the western clade. However, some specimens from Liñares represent an early split in the tree along with other pre‐LGM western samples from previous studies. Despite low bootstrap values in the Bayesian phylogenies, haplotype networks connect these foreign haplotypes to the eastern clade. We suggest a mixed phylogeographical model to explain this pattern with range expansions from the east during the expansion phase after the cold periods in marine isotope stage 3. We find slight isolation by distance in post‐LGM populations that could be a consequence of the recolonization from southern refugia after the LGM.  相似文献   
80.
O-Mannosylation and N-glycosylation are essential protein modifications that are initiated in the endoplasmic reticulum (ER). Protein translocation across the ER membrane and N-glycosylation are highly coordinated processes that take place at the translocon-oligosaccharyltransferase (OST) complex. In analogy, it was assumed that protein O-mannosyltransferases (PMTs) also act at the translocon, however, in recent years it turned out that prolonged ER residence allows O-mannosylation of un-/misfolded proteins or slow folding intermediates by Pmt1-Pmt2 complexes. Here, we reinvestigate protein O-mannosylation in the context of protein translocation. We demonstrate the association of Pmt1-Pmt2 with the OST, the trimeric Sec61, and the tetrameric Sec63 complex in vivo by co-immunoprecipitation. The coordinated interplay between PMTs and OST in vivo is further shown by a comprehensive mass spectrometry-based analysis of N-glycosylation site occupancy in pmtΔ mutants. In addition, we established a microsomal translation/translocation/O-mannosylation system. Using the serine/threonine-rich cell wall protein Ccw5 as a model, we show that PMTs efficiently mannosylate proteins during their translocation into microsomes. This in vitro system will help to unravel mechanistic differences between co- and post-translocational O-mannosylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号