首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6814篇
  免费   491篇
  国内免费   5篇
  7310篇
  2023年   47篇
  2022年   72篇
  2021年   152篇
  2020年   88篇
  2019年   116篇
  2018年   151篇
  2017年   124篇
  2016年   217篇
  2015年   354篇
  2014年   411篇
  2013年   436篇
  2012年   604篇
  2011年   502篇
  2010年   358篇
  2009年   291篇
  2008年   357篇
  2007年   395篇
  2006年   310篇
  2005年   341篇
  2004年   301篇
  2003年   261篇
  2002年   235篇
  2001年   70篇
  2000年   44篇
  1999年   67篇
  1998年   87篇
  1997年   55篇
  1996年   52篇
  1995年   58篇
  1994年   39篇
  1993年   37篇
  1992年   38篇
  1991年   29篇
  1990年   26篇
  1989年   23篇
  1988年   27篇
  1987年   28篇
  1986年   20篇
  1985年   28篇
  1984年   33篇
  1982年   30篇
  1981年   22篇
  1980年   15篇
  1979年   17篇
  1978年   20篇
  1977年   27篇
  1976年   21篇
  1975年   18篇
  1974年   14篇
  1973年   14篇
排序方式: 共有7310条查询结果,搜索用时 0 毫秒
941.
Gondwanamyces and its Custingophora anamorphs were first described from Protea infructescences in South Africa. Subsequently these unusual fungi were also found on Cecropia in Central America. During an investigation into the decline and death of native Euphorbia trees in South Africa, several fungal isolates resembling the anamorph state of Gondwanamyces were obtained from diseased tissues. In this study these isolates are identified based on morphology and comparisons of DNA sequences. Two previously unknown Gondwanamyces species were identified, both were associated with damage caused by beetles (Cossonus sp.). Inoculation studies showed that the new species of Gondwanamyces are pathogenic on Euphorbia ingens and may contribute to the decline of these trees.  相似文献   
942.
Modulation of the malate content of tomato (Solanum lycopersicum) fruit by altering the expression of mitochondrially localized enzymes of the tricarboxylic acid cycle resulted in enhanced transitory starch accumulation and subsequent effects on postharvest fruit physiology. In this study, we assessed whether such a manipulation would similarly affect starch biosynthesis in an organ that displays a linear, as opposed to a transient, kinetic of starch accumulation. For this purpose, we used RNA interference to down-regulate the expression of fumarase in potato (Solanum tuberosum) under the control of the tuber-specific B33 promoter. Despite displaying similar reductions in both fumarase activity and malate content as observed in tomato fruit expressing the same construct, the resultant transformants were neither characterized by an increased flux to, or accumulation of, starch, nor by alteration in yield parameters. Since the effect in tomato was mechanistically linked to derepression of the reaction catalyzed by ADP-glucose pyrophosphorylase, we evaluated whether the lack of effect on starch biosynthesis was due to differences in enzymatic properties of the enzyme from potato and tomato or rather due to differential subcellular compartmentation of reductant in the different organs. The results are discussed in the context both of current models of metabolic compartmentation and engineering.Starch is the most important carbohydrate used for food and feed purposes and represents the major resource for our diet (Smith, 2008). The total yield of starch in rice (Oryza sativa), corn (Zea mays), wheat (Triticum aestivum), and potato (Solanum tuberosum) exceeds 109 tons per year (Kossmann and Lloyd, 2000; Slattery et al., 2000). In addition to its use in a nonprocessed form, extracted starch is processed in many different ways, for instance as a high-Fru syrup, as a food additive, or for various technical purposes. As a result of this considerable importance, increasing the starch content of plant tissues has been a major goal for many years, with both classical breeding and biotechnological approaches being taken extensively over the last few decades (Martin and Smith, 1995; Regierer et al., 2002).The pathway by which carbon is converted from Suc to starch in the potato tuber is well established (Kruger, 1997; Fernie et al., 2002; Geigenberger et al., 2004; Geigenberger, 2011). Imported Suc is cleaved in the cytosol by Suc synthase, resulting in the formation of UDP-Glc and Fru; the UDP-Glc is subsequently converted to Glc-1-P by UDP-Glc pyrophosphorylase. The second product of the Suc synthase reaction, Fru, is efficiently phosphorylated to Fru-6-P by fructokinase (Renz et al., 1993; Davies et al., 2005). Fru-6-P is freely converted to Glc-6-P, in which form it normally enters the amyloplast (Kammerer et al., 1998; Tauberger et al., 2000; Zhang et al., 2008), and once in the plastid, it is converted to starch via the concerted action of plastidial phosphoglucomutase, ADP-Glc pyrophosphorylase (AGPase), and the various isoforms of starch synthase (Martin and Smith, 1995; Geigenberger, 2011). Of these reactions, although some of the control of starch synthesis resides in the plastidial phosphoglucomutase reaction (Fernie et al., 2001b), the AGPase reaction harbors the highest proportion of control within the linear pathway (Sweetlove et al., 1999; Geigenberger et al., 1999, 2004). In addition, considerable control resides in both the Glc-6-P phosphate antiporter (Zhang et al., 2008) and the amyloplastidial adenylate transporter (Tjaden et al., 1998; Zhang et al., 2008) as well as in reactions external to the pathways, such as the amyloplastidial adenylate kinase (Regierer et al., 2002), cytosolic UMP synthase (Geigenberger et al., 2005), and mitochondrial NAD-malic enzyme (Jenner et al., 2001).As part of our ongoing study of the constituent enzymes of the tricarboxylic acid (TCA) cycle, we made an initially surprising observation that increasing or decreasing the content of malate via a fruit-specific expression of antisense constructs targeted against the mitochondrial malate dehydrogenase or fumarase, respectively, resulted in opposing changes in the levels of starch (Centeno et al., 2011). We were able to demonstrate that these plants were characterized by an altered cellular redox balance and that this led to changes in the activation state of the AGPase reaction. Given that starch only accumulates transiently in tomato (Solanum lycopersicum; Beckles et al., 2001) as a consequence of this activation, the fruits were characterized by altered sugar content at ripening, a fact that dramatically altered their postharvest characteristics (Centeno et al., 2011). Here, we chose to express the antisense fumarase construct in potato in order to ascertain the effect of the manipulation in an organ that linearly accumulates starch across its development. The results obtained are compared and contrasted with those of the tomato fruit and within the context of current models of subcellular redox regulation.  相似文献   
943.
With the development of transgenic crop varieties, crop-wild hybridization has received considerable consideration with regard to the potential of transgenes to be transferred to wild species. Although many studies have shown that crops can hybridize with their wild relatives and that the resulting hybrids may show improved fitness over the wild parents, little is still known on the genetic contribution of the crop parent to the performance of the hybrids. In this study, we investigated the vigour of lettuce hybrids using 98 F(2:3) families from a cross between cultivated lettuce and its wild relative Lactuca serriola under non-stress conditions and under drought, salinity and nutrient deficiency. Using single nucleotide polymorphism markers, we mapped quantitative trait loci associated with plant vigour in the F(2:3) families and determined the allelic contribution of the two parents. Seventeen QTLs (quantitative trait loci) associated with vigour and six QTLs associated with the accumulation of ions (Na(+), Cl(-) and K(+)) were mapped on the nine linkage groups of lettuce. Seven of the vigour QTLs had a positive effect from the crop allele and six had a positive effect from the wild allele across treatments, and four QTLs had a positive effect from the crop allele in one treatment and from the wild allele in another treatment. Based on the allelic effect of the QTLs and their location on the genetic map, we could suggest genomic locations where transgene integration should be avoided when aiming at the mitigation of its persistence once crop-wild hybridization takes place.  相似文献   
944.
In-vivo whole brain mapping of the radio frequency transmit field B(1) (+) is a key aspect of recent method developments in ultra high field MRI. We present an optimized method for fast and robust in-vivo whole-brain B(1) (+) mapping at 7T. The method is based on the acquisition of stimulated and spin echo 3D EPI images and was originally developed at 3T. We further optimized the method for use at 7T. Our optimization significantly improved the robustness of the method against large B(1) (+) deviations and off-resonance effects present at 7T. The mean accuracy and precision of the optimized method across the brain was high with a bias less than 2.6 percent unit (p.u.) and random error less than 0.7 p.u. respectively.  相似文献   
945.
By breeding TRAMP mice with S100A9 knock-out (S100A9(-/-)) animals and scoring the appearance of palpable tumors we observed a delayed tumor growth in animals devoid of S100A9 expression. CD11b(+) S100A9 expressing cells were not observed in normal prostate tissue from control C57BL/6 mice but were readily detected in TRAMP prostate tumors. Also, S100A9 expression was observed in association with CD68(+) macrophages in biopsies from human prostate tumors. Delayed growth of TRAMP tumors was also observed in mice lacking the S100A9 ligand TLR4. In the EL-4 lymphoma model tumor growth inhibition was observed in S100A9(-/-) and TLR4(-/-), but not in RAGE(-/-) animals lacking an alternative S100A9 receptor. When expression of immune-regulating genes was analyzed using RT-PCR the only common change observed in mice lacking S100A9 and TLR4 was a down-regulation of TGFβ expression in splenic CD11b(+) cells. Lastly, treatment of mice with a small molecule (ABR-215050) that inhibits S100A9 binding to TLR4 inhibited EL4 tumor growth. Thus, S100A9 and TLR4 appear to be involved in promoting tumor growth in two different tumor models and pharmacological inhibition of S100A9-TLR4 interactions is a novel and promising target for anti-tumor therapies.  相似文献   
946.
In this three year field study the impact of different potato (Solanum tuberosum L.) cultivars including a genetically modified (GM) amylopectin-accumulating potato line on rhizosphere fungal communities are investigated using molecular microbiological methods. The effects of growth stage of a plant, soil type and year on the rhizosphere fungi were included in this study. To compare the effects, one GM cultivar, the parental isoline, and four non-related cultivars were planted in the fields and analysed using T-RFLP on the basis of fungal phylum specific primers combined with multivariate statistical methods. Additionally, fungal biomass and some extracellular fungal enzymes (laccases, Mn-peroxidases and cellulases) were quantified in order to gain insight into the function of the fungal communities. Plant growth stage and year (and agricultural management) had the strongest effect on both diversity and function of the fungal communities while the GM-trait studied was the least explanatory factor. The impact of cultivar and soil type was intermediate. Occasional differences between cultivars, the amylopectin-accumulating potato line, and its parental variety were detected, but these differences were mostly transient in nature and detected either only in one soil, one growth stage or one year.  相似文献   
947.
Equine recurrent uveitis is a severe and frequent blinding disease in horses which presents with auto-reactive invading T-cells, resulting in the destruction of the inner eye. Infiltration of inflammatory cells into the retina and vitreous is driven by currently unknown guidance cues, however surgical removal of the vitreous (vitrectomy) has proven therapeutically successful. Therefore, proteomic analyses of vitrectomy samples are likely to result in detection of proteins contributing to disease pathogenesis. Vitreous from healthy and ERU diseased horses were directly compared by quantitative mass spectrometry based on label-free quantification of peak intensities across samples. We found a significant upregulation of complement and coagulation cascades and downregulation of negative paracrine regulators of canonical Wnt signalling including the Wnt signalling inhibitors DKK3 and SFRP2. Based on immunohistochemistry, both proteins are expressed in equine retina and suggest localisation to retinal Müller glial cells (RMG), which may be the source cells for these proteins. Furthermore, retinal expression levels and patterns of DKK3 change in response to ERU. Since many other regulated proteins identified here are associated with RMG cells, these cells qualify as the prime responders to autoimmune triggers.  相似文献   
948.

Introduction

Circulating cell-free DNA (cf-DNA) is a useful indicator of cell death, and it can also be used to predict outcomes in various clinical disorders. Several innate immune mechanisms are known to be involved in eliminating DNA and chromatin-related material as part of the inhibition of potentially harmful autoimmune responses. However, the exact molecular mechanism underlying the clearance of circulating cf-DNA is currently unclear.

Methods

To examine the mechanisms controlling serum levels of cf-DNA, we carried out a genome-wide association analysis (GWA) in a cohort of young adults (aged 24–39 years; n = 1841; 1018 women and 823 men) participating in the Cardiovascular Risk in Young Finns Study. Genotyping was performed with a custom-built Illumina Human 670 k BeadChip. The Quant-iTTM high sensitivity DNA assay was used to measure cf-DNA directly from serum.

Results

The results revealed that 110 single nucleotide polymorphisms (SNPs) were associated with serum cf-DNA with genome-wide significance (p<5×10−8). All of these significant SNPs were localised to chromosome 2q37, near the UDP-glucuronosyltransferase 1 (UGT1) family locus, and the most significant SNPs localised within the UGT1 polypeptide A1 (UGT1A1) gene region.

Conclusion

The UGT1A1 enzyme catalyses the detoxification of several drugs and the turnover of many xenobiotic and endogenous compounds by glucuronidating its substrates. These data indicate that UGT1A1-associated processes are also involved in the regulation of serum cf-DNA concentrations.  相似文献   
949.

Background

It has been widely established that the conversion of the cellular prion protein (PrPC) into its abnormal isoform (PrPSc) is responsible for the development of transmissible spongiform encephalopathies (TSEs). However, the knowledge of the detailed molecular mechanisms and direct functional consequences within the cell is rare. In this study, we aimed at the identification of deregulated proteins which might be involved in prion pathogenesis.

Findings

Apolipoprotein E and peroxiredoxin 6 (PRDX6) were identified as upregulated proteins in brains of scrapie-infected mice and cultured neuronal cell lines. Downregulation of PrP gene expression using specific siRNA did not result in a decrease of PRDX6 amounts. Interestingly, selective siRNA targeting PRDX6 or overexpression of PRDX6 controlled PrPC and PrPSc protein amounts in neuronal cells.

Conclusions

Besides its possible function as a novel marker protein in the diagnosis of TSEs, PDRX6 represents an attractive target molecule in putative pharmacological intervention strategies in the future.  相似文献   
950.
We evaluated the ability of simple and complex surrogate-indices to identify individuals from an overweight/obese cohort with hepatic insulin-resistance (HEP-IR). Five indices, one previously defined and four newly generated through step-wise linear regression, were created against a single-cohort sample of 77 extensively characterised participants with the metabolic syndrome (age 55.6 ± 1.0 years, BMI 31.5 ± 0.4 kg/m(2); 30 males). HEP-IR was defined by measuring endogenous-glucose-production (EGP) with [6-6(2)H(2)] glucose during fasting and euglycemic-hyperinsulinemic clamps and expressed as EGP*fasting plasma insulin. Complex measures were incorporated into the model, including various non-standard biomarkers and the measurement of body-fat distribution and liver-fat, to further improve the predictive capability of the index. Validation was performed against a data set of the same subjects after an isoenergetic dietary intervention (4 arms, diets varying in protein and fiber content versus control). All five indices produced comparable prediction of HEP-IR, explaining 39-56% of the variance, depending on regression variable combination. The validation of the regression equations showed little variation between the different proposed indices (r(2) = 27-32%) on a matched dataset. New complex indices encompassing advanced measurement techniques offered an improved correlation (r = 0.75, P<0.001). However, when validated against the alternative dataset all indices performed comparably with the standard homeostasis model assessment for insulin resistance (HOMA-IR) (r = 0.54, P<0.001). Thus, simple estimates of HEP-IR performed comparable to more complex indices and could be an efficient and cost effective approach in large epidemiological investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号