首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99973篇
  免费   810篇
  国内免费   887篇
  101670篇
  2023年   49篇
  2022年   75篇
  2021年   150篇
  2020年   92篇
  2019年   123篇
  2018年   11958篇
  2017年   10767篇
  2016年   7636篇
  2015年   950篇
  2014年   704篇
  2013年   730篇
  2012年   4801篇
  2011年   13289篇
  2010年   12317篇
  2009年   8496篇
  2008年   10114篇
  2007年   11723篇
  2006年   577篇
  2005年   846篇
  2004年   1278篇
  2003年   1277篇
  2002年   1017篇
  2001年   348篇
  2000年   238篇
  1999年   103篇
  1998年   107篇
  1997年   92篇
  1996年   71篇
  1995年   61篇
  1994年   50篇
  1993年   71篇
  1992年   68篇
  1991年   84篇
  1990年   47篇
  1989年   39篇
  1988年   59篇
  1987年   47篇
  1986年   28篇
  1985年   36篇
  1984年   50篇
  1983年   40篇
  1982年   35篇
  1981年   25篇
  1979年   29篇
  1977年   25篇
  1975年   30篇
  1974年   26篇
  1972年   259篇
  1971年   286篇
  1962年   27篇
排序方式: 共有10000条查询结果,搜索用时 8 毫秒
951.
The Notch signaling pathway is an evolutionarily conserved transduction pathway involved in embryonic patterning and regulation of cell fates during development. Recent studies have demonstrated that this pathway is integral to a complex system of interactions, which are also involved in distinct human diseases. Delta1 is one of the known ligands of the Notch receptors. Mice homozygous for a loss-of-function allele of the Delta1 gene Dll1(lacZ/lacZ) die during embryonic development. Here, we present the results of two phenotype-driven modifier screens. Heterozygous Dll1(lacZ) knockout animals were crossed with ENU-mutagenized mice and screened for dysmorphological, clinical chemical, and immunological variants that are dependent on the Delta1 loss-of-function allele. First, we show that mutagenized heterozygous Dll1(lacZ) offspring have reduced body weight and altered specific clinical chemical parameters, including changes in metabolites and electrolytes relevant for kidney function. In our mutagenesis screen we have successfully generated 35 new mutant lines. Of major interest are 7 mutant lines that exhibit a Dll1(lacZ/+)-dependent phenotype. These mutant mouse lines provide excellent in vivo tools for studying the role of Notch signaling in kidney and liver function, cholesterol and iron metabolism, cell-fate decisions, and during maturation of T cells in the immune system.  相似文献   
952.
Resolving the genetic basis of invasiveness and predicting invasions   总被引:1,自引:0,他引:1  
Weinig C  Brock MT  Dechaine JA  Welch SM 《Genetica》2007,129(2):205-216
Considerable effort has been invested in determining traits underlying invasiveness. Yet, identifying a set of traits that commonly confers invasiveness in a range of species has proven elusive, and almost nothing is known about genetic loci affecting invasive success. Incorporating genetic model organisms into ecologically relevant studies is one promising avenue to begin dissecting the genetic underpinnings of invasiveness. Molecular biologists are rapidly characterizing genes mediating developmental responses to diverse environmental cues, i.e., genes for plasticity, as well as to environmental factors likely to impose strong selection on invading species, e.g., resistance to herbivores and competitors, coordination of life-history events with seasonal changes, and physiological tolerance of heat, drought, or cold. Here, we give an overview of molecular genetic tools increasingly used to characterize the genetic basis of adaptation and that may be used to begin identifying genetic mechanisms of invasiveness. Given the divergent traits that affect invasiveness, “invasiveness genes” common to many clades are unlikely, but the combination of developmental genetic advances with further evolutionary studies and modeling may provide a framework for identifying genes that account for invasiveness in related species.  相似文献   
953.
Haag ES 《Genetica》2007,129(1):45-55
The evolution of molecules, developmental circuits, and new species are all characterized by the accumulation of incompatibilities between ancestors and descendants. When specific interactions between components are necessary at any of these levels, this requires compensatory coevolution. Theoretical treatments of compensatory evolution that only consider the endpoints predict that it should be rare because intermediate states are deleterious. However, empirical data suggest that compensatory evolution is common at all levels of molecular interaction. A general solution to this paradox is provided by plausible neutral or nearly neutral intermediates that possess informational redundancy. These intermediates provide an evolutionary path between coadapted allelic combinations. Although they allow incompatible end points to evolve, at no point was a deleterious mutation ever in need of compensation. As a result, what appears to be compensatory evolution may often actually be “pseudocompensatory.” Both theoretical and empirical studies indicate that pseudocompensation can speed the evolution of intergenic incompatibility, especially when driven by adaptation. However, under strong stabilizing selection the rate of pseudocompensatory evolution is still significant. Important examples of this process at work discussed here include the evolution of rRNA secondary structures, intra- and inter-protein interactions, and developmental genetic pathways. Future empirical work in this area should focus on comparing the details of intra- and intergenic interactions in closely related organisms.  相似文献   
954.
Johannes F 《Genetics》2007,175(2):855-865
Existing methods for mapping quantitative trait loci (QTL) in time-to-failure experiments assume that the QTL effect is constant over the course of the study. This assumption may be violated when the gene(s) underlying the QTL are up- or downregulated on a biologically meaningful timescale. In such situations, models that assume a constant effect can fail to detect QTL in a whole-genome scan. To investigate this possibility, we utilize an extension of the Cox model (EC model) within an interval-mapping framework. In its simplest form, this model assumes that the QTL effect changes at some time point t0 and follows a linear function before and after this change point. The approximate time point at which this change occurs is estimated. Using simulated and real data, we compare the mapping performance of the EC model to the Cox proportional hazards (CPH) model, which explicitly assumes a constant effect. The results show that the EC model detects time-dependent QTL, which the CPH model fails to detect. At the same time, the EC model recovers all of the QTL the CPH model detects. We conclude that potentially important QTL may be missed if their time-dependent effects are not accounted for.  相似文献   
955.
The osmotolerant and cell wall properties of the two most studied wild-type Zygosaccharomyces rouxii strains (CBS 732 and ATCC 42981) were examined. Differences in their (1) tolerance to high salt content in the medium, (2) resistance to the lysing enzymes Lyticase and Zymolyase, (3) cell-wall polymer content and (4) cell wall micromorphology suggested that the less osmotolerant CBS 732 strain possesses a more rigid cell wall than the more osmotolerant ATCC 42981, whose cell wall seems to be more flexible and elastic.  相似文献   
956.
The influence of environmental factors (temperature, aerobiosis-anaerobiosis, static-dynamic conditions, pH) was determined on biofilm formation by 51 S. maltophilia clinical isolates. The strains produced more biofilm at 32 degrees C than at 37 or 18 degrees C. Aerobic and 6% CO2 atmosphere yielded comparable biofilm amounts, higher than under anaerobic conditions. Biofilm production was not affected by static vs. agitated culture conditions. Biofilm production at pH 7.5 and 8.5 was comparable but significantly higher than at pH 5.5. The capacity of individual strains to form biofilm and thus contribute to the severity of some diseases is influenced by host traits and environmental conditions at the site of infection, and play an important role in the pathogenesis of biomaterial-related disease caused by S. maltophilia.  相似文献   
957.
The cell wall of the unicellular green alga Chlamydomonas reinhardtii consists of an insoluble, hydroxyproline-rich glycoprotein framework and several chaotrope-soluble, hydroxyproline-containing glycoproteins. Up to now, there have been no data concerning the amino acid sequences of the hydroxyproline-containing polypeptides of the insoluble wall fraction. Matrix-assisted laser desorption ionization time-of-flight analyses of peptides released from the insoluble cell wall fraction by trypsin treatment revealed the presence of 14 peptide fragments that could be attributed to non-glycosylated domains of the chaotrope-soluble cell wall glycoprotein GP2. However, these peptides cover only 15% of the GP2 polypeptide backbone. Considerably more information concerning the presence of GP2 in the insoluble cell wall fraction was obtained by an immunochemical approach. For this purpose, 407 overlapping pentadecapeptides covering the whole known amino acid sequence of GP2 were chemically synthesized and probed with a polyclonal antibody raised against the deglycosylated, insoluble cell wall fraction. This particular antibody reacted with 297 of the 407 GP2-derived peptides. The peptides that were recognized by this antibody are distributed over the whole known GP2 sequence. The epitopes recognized by polyclonal antibodies raised against the 64- and 45-kDa constituents purified from the deglycosylation products of the insoluble cell wall fraction are also distributed over the whole GP2 backbone, although the corresponding antigens are considerably smaller than GP2. The significance of the latter results for the structure of the insoluble cell wall fraction is discussed.  相似文献   
958.
The primary catabolic pathway for glucosylceramide is catalyzed by the lysosomal enzyme glucocerebrosidase that is defective in Gaucher disease patients. A distinct non-lysosomal glucosylceramidase has been described but its identity remained enigmatic for years. We here report that the non-lysosomal glucosylceramidase is identical to the earlier described bile acid beta-glucosidase, being beta-glucosidase 2 (GBA2). Expressed GBA2 is identical to the native non-lysosomal glucosylceramidase in various enzymatic features such as substrate specificity and inhibitor sensitivity. Expression of GBA2 coincides with increased non-lysosomal glucosylceramidase activity, and GBA2-targeted RNA interference reduces endogenous non-lysosomal glucosylceramidase activity in cells. GBA2 is found to be located at or close to the cell surface, and its activity is linked to sphingomyelin generation. Hydrophobic deoxynojirimycins are extremely potent inhibitors for GBA2. In mice pharmacological inhibition of GBA2 activity is associated with impaired spermatogenesis, a phenomenon also very recently reported for GBA2 knock-out mice (Yildiz, Y., Matern, H., Thompson, B., Allegood, J. C., Warren, R. L., Ramirez, D. M., Hammer, R. E., Hamra, F. K., Matern, S., and Russell, D. W. (2006) J. Clin. Invest. 116, 2985-2994). In conclusion, GBA2 plays a role in cellular glucosylceramide metabolism.  相似文献   
959.
There is much interest in using magnetic resonance diffusion imaging to provide information on anatomical connectivity in the brain by measuring the diffusion of water in white matter tracts. Among the measures, the most commonly derived from diffusion data is fractional anisotropy (FA), which quantifies local tract directionality and integrity. Many multi-subject imaging studies are using FA images to localize brain changes related to development, degeneration and disease. In a recent paper, we presented a new approach, tract-based spatial statistics (TBSS), which aims to solve crucial issues of cross-subject data alignment, allowing localized cross-subject statistical analysis. This works by transforming the data from the centers of the tracts that are consistent across a study's subjects into a common space. In this protocol, we describe the MRI data acquisition and analysis protocols required for TBSS studies of localized change in brain connectivity across multiple subjects.  相似文献   
960.
A major aim of proteomics is the identification of proteins in a given proteome at a given metabolic state. This protocol describes the step-by-step labeling, purification and detection of newly synthesized proteins in mammalian cells using the non-canonical amino acid azidohomoalanine (AHA). In this method, metabolic labeling of newly synthesized proteins with AHA endows them with the unique chemical functionality of the azide group. In the subsequent click chemistry tagging reaction, azide-labeled proteins are covalently coupled to an alkyne-bearing affinity tag. After avidin-based affinity purification and on-resin trypsinization, the resulting peptide mixture is subjected to tandem mass spectrometry for identification. In combination with deuterated leucine-based metabolic colabeling, candidate proteins can be immediately validated. Bioorthogonal non-canonical amino-acid tagging can be combined with any subcellular fractionation, immunopurification or other proteomic method to identify specific subproteomes, thereby reducing sample complexity and enabling the identification of subtle changes in a proteome. This protocol can be completed in 5 days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号