首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3737篇
  免费   313篇
  2023年   21篇
  2022年   29篇
  2021年   96篇
  2020年   54篇
  2019年   71篇
  2018年   69篇
  2017年   74篇
  2016年   130篇
  2015年   224篇
  2014年   228篇
  2013年   245篇
  2012年   342篇
  2011年   267篇
  2010年   171篇
  2009年   148篇
  2008年   216篇
  2007年   214篇
  2006年   172篇
  2005年   184篇
  2004年   166篇
  2003年   166篇
  2002年   106篇
  2001年   47篇
  2000年   52篇
  1999年   50篇
  1998年   27篇
  1997年   22篇
  1996年   25篇
  1995年   20篇
  1994年   13篇
  1993年   25篇
  1992年   35篇
  1991年   26篇
  1990年   28篇
  1989年   17篇
  1988年   25篇
  1987年   25篇
  1986年   25篇
  1985年   27篇
  1984年   14篇
  1983年   11篇
  1982年   7篇
  1981年   12篇
  1980年   7篇
  1979年   20篇
  1978年   7篇
  1976年   9篇
  1975年   10篇
  1972年   12篇
  1966年   6篇
排序方式: 共有4050条查询结果,搜索用时 15 毫秒
51.
Successful learning is the integration of new knowledge into existing schemes, leading to an integrated and correct scientific conception. By contrast, the co-existence of scientific and alternative conceptions may indicate a fragmented knowledge profile. Every learner is unique and thus carries an individual set of preconceptions before classroom engagement due to prior experiences. Hence, instructors and teachers have to consider the heterogeneous knowledge profiles of their class when teaching. However, determinants of fragmented knowledge profiles are not well understood yet, which may hamper a development of adapted teaching schemes. We used a questionnaire-based approach to assess conceptual knowledge of tree assimilation and wood synthesis surveying 885 students of four educational levels: 6th graders, 10th graders, natural science freshmen and other academic studies freshmen. We analysed the influence of learner’s characteristics such as educational level, age and sex on the coexistence of scientific and alternative conceptions. Within all subsamples well-known alternative conceptions regarding tree assimilation and wood synthesis coexisted with correct scientific ones. For example, students describe trees to be living on “soil and sunshine”, representing scientific knowledge of photosynthesis mingled with an alternative conception of trees eating like animals. Fragmented knowledge profiles occurred in all subsamples, but our models showed that improved education and age foster knowledge integration. Sex had almost no influence on the existing scientific conceptions and evolution of knowledge integration. Consequently, complex biological issues such as tree assimilation and wood synthesis need specific support e.g. through repeated learning units in class- and seminar-rooms in order to help especially young students to handle and overcome common alternative conceptions and appropriately integrate scientific conceptions into their knowledge profile.  相似文献   
52.
53.
Costs of reproduction due to resource allocation trade-offs have long been recognized as key forces in life history evolution, but little is known about their functional or genetic basis. Arabidopsis lyrata, a perennial relative of the annual model plant A. thaliana with a wide climatic distribution, has populations that are strongly diverged in resource allocation. In this study, we evaluated the genetic and functional basis for variation in resource allocation in a reciprocal transplant experiment, using four A. lyrata populations and F2 progeny from a cross between North Carolina (NC) and Norway parents, which had the most divergent resource allocation patterns. Local alleles at quantitative trait loci (QTL) at a North Carolina field site increased reproductive output while reducing vegetative growth. These QTL had little overlap with flowering date QTL. Structural equation models incorporating QTL genotypes and traits indicated that resource allocation differences result primarily from QTL effects on early vegetative growth patterns, with cascading effects on later vegetative and reproductive development. At a Norway field site, North Carolina alleles at some of the same QTL regions reduced survival and reproductive output components, but these effects were not associated with resource allocation trade-offs in the Norway environment. Our results indicate that resource allocation in perennial plants may involve important adaptive mechanisms largely independent of flowering time. Moreover, the contributions of resource allocation QTL to local adaptation appear to result from their effects on developmental timing and its interaction with environmental constraints, and not from simple models of reproductive costs.  相似文献   
54.
55.
56.
Gadolinium-containing carbon nanomaterials are a new class of contrast agent for magnetic resonance imaging. They are characterized by a superior proton relaxivity to any current commercial gadolinium contrast agent and offer the possibility to design multifunctional contrasts. Intense efforts have been made to develop these nanomaterials because of their potential for better results than the available gadolinium contrast agents. The aim of the present work is to provide a review of the advances in research on gadolinium-containing carbon nanomaterials and their advantages over conventional gadolinium contrast agents. Due to their enhanced proton relaxivity, they can provide a reliable imaging contrast for cells, tissues or organs with much smaller doses than currently used in clinical practice, thus leading to reduced toxicity (as shown by cytotoxicity and biodistribution studies). Their active targeting capability allows for improved MRI of molecular or cellular targets, overcoming the limited labelling capability of available contrast agents (restricted to physiological irregularities during pathological conditions). Their potential of multifunctionality encompasses multimodal imaging and the combination of imaging and therapy.  相似文献   
57.
58.
On the basis of phylogenetic studies and laboratory cultures, it has been proposed that the ability of microbes to metabolize iron has emerged prior to the Archaea/Bacteria split. However, no unambiguous geochemical data supporting this claim have been put forward in rocks older than 2.7–2.5 giga years (Gyr). In the present work, we report in situ Fe and S isotope composition of pyrite from 3.28‐ to 3.26‐Gyr‐old cherts from the upper Mendon Formation, South Africa. We identified three populations of microscopic pyrites showing a wide range of Fe isotope compositions, which cluster around two δ56Fe values of ?1.8‰ and +1‰. These three pyrite groups can also be distinguished based on the pyrite crystallinity and the S isotope mass‐independent signatures. One pyrite group displays poorly crystallized pyrite minerals with positive Δ33S values > +3‰, while the other groups display more variable and closer to 0‰ Δ33S values with recrystallized pyrite rims. It is worth to note that all the pyrite groups display positive Δ33S values in the pyrite core and similar trace element compositions. We therefore suggest that two of the pyrite groups have experienced late fluid circulations that have led to partial recrystallization and dilution of S isotope mass‐independent signature but not modification of the Fe isotope record. Considering the mineralogy and geochemistry of the pyrites and associated organic material, we conclude that this iron isotope systematic derives from microbial respiration of iron oxides during early diagenesis. Our data extend the geological record of dissimilatory iron reduction (DIR) back more than 560 million years (Myr) and confirm that micro‐organisms closely related to the last common ancestor had the ability to reduce Fe(III).  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号