首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2667篇
  免费   186篇
  2853篇
  2023年   18篇
  2022年   31篇
  2021年   69篇
  2020年   32篇
  2019年   43篇
  2018年   46篇
  2017年   47篇
  2016年   94篇
  2015年   168篇
  2014年   169篇
  2013年   188篇
  2012年   260篇
  2011年   205篇
  2010年   131篇
  2009年   113篇
  2008年   151篇
  2007年   153篇
  2006年   124篇
  2005年   142篇
  2004年   127篇
  2003年   112篇
  2002年   75篇
  2001年   15篇
  2000年   19篇
  1999年   30篇
  1998年   24篇
  1997年   15篇
  1996年   20篇
  1995年   15篇
  1994年   11篇
  1993年   15篇
  1992年   16篇
  1991年   11篇
  1990年   17篇
  1989年   8篇
  1988年   12篇
  1987年   7篇
  1986年   10篇
  1985年   10篇
  1984年   5篇
  1983年   6篇
  1981年   8篇
  1980年   5篇
  1979年   11篇
  1976年   7篇
  1975年   8篇
  1974年   3篇
  1972年   5篇
  1966年   5篇
  1931年   3篇
排序方式: 共有2853条查询结果,搜索用时 15 毫秒
51.
Epigenetic modifications such as DNA methylation play a key role in gene regulation and disease susceptibility. However, little is known about the genome-wide frequency, localization, and function of methylation variation and how it is regulated by genetic and environmental factors. We utilized the Multiple Tissue Human Expression Resource (MuTHER) and generated Illumina 450K adipose methylome data from 648 twins. We found that individual CpGs had low variance and that variability was suppressed in promoters. We noted that DNA methylation variation was highly heritable (h2median = 0.34) and that shared environmental effects correlated with metabolic phenotype-associated CpGs. Analysis of methylation quantitative-trait loci (metQTL) revealed that 28% of CpGs were associated with nearby SNPs, and when overlapping them with adipose expression quantitative-trait loci (eQTL) from the same individuals, we found that 6% of the loci played a role in regulating both gene expression and DNA methylation. These associations were bidirectional, but there were pronounced negative associations for promoter CpGs. Integration of metQTL with adipose reference epigenomes and disease associations revealed significant enrichment of metQTL overlapping metabolic-trait or disease loci in enhancers (the strongest effects were for high-density lipoprotein cholesterol and body mass index [BMI]). We followed up with the BMI SNP rs713586, a cg01884057 metQTL that overlaps an enhancer upstream of ADCY3, and used bisulphite sequencing to refine this region. Our results showed widespread population invariability yet sequence dependence on adipose DNA methylation but that incorporating maps of regulatory elements aid in linking CpG variation to gene regulation and disease risk in a tissue-dependent manner.  相似文献   
52.
Extracellular polysaccharides are major immunogenic components of the bacterial cell envelope. However, little is known about their biosynthesis in the genus Acinetobacter, which includes A. baumannii, an important nosocomial pathogen. Whether Acinetobacter sp. produce a capsule or a lipopolysaccharide carrying an O antigen or both is not resolved. To explore these issues, genes involved in the synthesis of complex polysaccharides were located in 10 complete A. baumannii genome sequences, and the function of each of their products was predicted via comparison to enzymes with a known function. The absence of a gene encoding a WaaL ligase, required to link the carbohydrate polymer to the lipid A-core oligosaccharide (lipooligosaccharide) forming lipopolysaccharide, suggests that only a capsule is produced. Nine distinct arrangements of a large capsule biosynthesis locus, designated KL1 to KL9, were found in the genomes. Three forms of a second, smaller variable locus, likely to be required for synthesis of the outer core of the lipid A-core moiety, were designated OCL1 to OCL3 and also annotated. Each K locus includes genes for capsule export as well as genes for synthesis of activated sugar precursors, and for glycosyltransfer, glycan modification and oligosaccharide repeat-unit processing. The K loci all include the export genes at one end and genes for synthesis of common sugar precursors at the other, with a highly variable region that includes the remaining genes in between. Five different capsule loci, KL2, KL6, KL7, KL8 and KL9 were detected in multiply antibiotic resistant isolates belonging to global clone 2, and two other loci, KL1 and KL4, in global clone 1. This indicates that this region is being substituted repeatedly in multiply antibiotic resistant isolates from these clones.  相似文献   
53.
54.
Circadian (clock) genes have been linked with several functions relevant to cancer, and epidemiologic research has suggested relationships with breast cancer risk for variants in NPAS2, CLOCK, CRY2 and TIMELESS. Increased breast cancer risk has also been observed among shift workers, suggesting potential interactions in relationships of circadian genes with breast cancer. Relationships with breast cancer of 100 SNPs in 14 clock-related genes, as well as potential interactions with shift work history, were investigated in a case–control study (1042 cases, 1051 controls). Odds ratios in an additive genetic model for European-ancestry participants (645 cases, 806 controls) were calculated, using a two-step correction for multiple testing: within each gene through permutation testing (10,000 permutations), and correcting for the false discovery rate across genes. Interactions of genotypes with ethnicity and shift work (<2 years vs ≥2 years) were evaluated individually. Following permutation analysis, two SNPs (rs3816360 in ARNTL and rs11113179 in CRY1) displayed significant associations with breast cancer and one SNP (rs3027188 in PER1) was marginally significant; however, none were significant following adjustment for the false discovery rate. No significant interaction with shift work history was detected. If shift work causes circadian disruption, this was not reflected in associations between clock gene variants and breast cancer risk in this study. Larger studies are needed to assess interactions with longer durations (>30 years) of shift work that have been associated with breast cancer.  相似文献   
55.
56.

Background

Treatment of breast cancer patients with distant metastases represents one of the biggest challenges in today’s gynecological oncology. Therefore, a better understanding of mechanisms promoting the development of metastases is of paramount importance. The serine/threonine kinase AKT was shown to drive cancer progression and metastasis. However, there is emerging data that single AKT isoforms (i.e. AKT1, AKT2 and AKT3) have different or even opposing functions in the regulation of cancer cell migration in vitro, giving rise to the hypothesis that inhibition of distinct AKT isoforms might have undesirable effects on cancer dissemination in vivo.

Methods

The triple negative breast cancer cell line MDA-MB-231 was used to investigate the functional roles of AKT in migration and metastasis. AKT single and double knockdown cells were generated using isoform specific shRNAs. Migration was analyzed using live cell imaging, chemotaxis and transwell assays. The metastatic potential of AKT isoform knockdown cells was evaluated in a subcutaneous xenograft mouse model in vivo.

Results

Depletion of AKT3, but not AKT1 or AKT2, resulted in increased migration in vitro. This effect was even more prominent in AKT2,3 double knockdown cells. Furthermore, combined downregulation of AKT2 and AKT3, as well as AKT1 and AKT3 significantly increased metastasis formation in vivo. Screening for promigratory proteins revealed that downregulation of AKT3 increases the expression of S100A4 protein. In accordance, depletion of S100A4 by siRNA approach reverses the increased migration induced by knockdown of AKT3.

Conclusions

We demonstrated that knockdown of AKT3 can increase the metastatic potential of triple negative breast cancer cells. Therefore, our results provide a rationale for the development of AKT isoform specific inhibitors.  相似文献   
57.
58.
In vivo animal model systems, and in particular mouse models, have evolved into powerful and versatile scientific tools indispensable to basic and translational research in the field of transplantation medicine. A vast array of reagents is available exclusively in this setting, including mono- and polyclonal antibodies for both diagnostic and interventional applications. In addition, a vast number of genotyped, inbred, transgenic, and knock out strains allow detailed investigation of the individual contributions of humoral and cellular components to the complex interplay of an immune response and make the mouse the gold standard for immunological research. Vascularized Composite Allotransplantation (VCA) delineates a novel field of transplantation using allografts to replace "like with like" in patients suffering traumatic or congenital tissue loss. This surgical methodological protocol shows the use of a non-suture cuff technique for super-microvascular anastomosis in an orthotopic mouse hind limb transplantation model. The model specifically allows for comparison between established paradigms in solid organ transplantation with a novel form of transplants consisting of various different tissue components. Uniquely, this model allows for the transplantation of a viable vascularized bone marrow compartment and niche that have the potential to exert a beneficial effect on the balance of immune acceptance and rejection. This technique provides a tool to investigate alloantigen recognition and allograft rejection and acceptance, as well as enables the pursuit of functional nerve regeneration studies to further advance this novel field of transplantation.  相似文献   
59.
60.

Background

The aim of this study was to investigate the effect of a lifestyle intervention in obesity on the soluble form of the activated leukocyte cell adhesion molecule (sALCAM) and its association with metabolic parameters.

Methods

Twenty-nine obese subjects selected from the OPTIFAST®52 program. This program consisted into 2 crucial phases: an initial 12-week active weight reduction phase, followed by a 40-week weight maintenance phase. At baseline, after 12 weeks and at the end of the program, fasting glucose and insulin, total cholesterol, LDL-C, HDL-C, triglycerides, adiponectin, leptin, high sensitivity CRP, sALCAM, homeostasis model assessment-estimated insulin resistance (HOMA-IR) and leptin-to-adiponectin-ratio were determined. Oral glucose tolerance test (OGTT) was performed when indicated.

Results

At baseline, the serum concentration of sALCAM was increased and correlated positively with HOMA-IR and negatively with age. At the end of the program, sALCAM concentrations decreased significantly. Multivariate analysis showed that sALCAM significantly correlated with age, glucose concentration after 2 h OGTT and the HOMA-IR. A higher decrease of HOMA-IR during the study was observed in subjects with higher concentration of sALCAM at baseline.

Conclusions

sALCAM might be a novel biomarker in obesity that correlates and predicts insulin sensitivity improvement and that can be affected by lifestyle intervention.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号