首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3183篇
  免费   245篇
  3428篇
  2023年   19篇
  2022年   33篇
  2021年   74篇
  2020年   38篇
  2019年   47篇
  2018年   58篇
  2017年   59篇
  2016年   102篇
  2015年   181篇
  2014年   192篇
  2013年   215篇
  2012年   282篇
  2011年   236篇
  2010年   164篇
  2009年   138篇
  2008年   168篇
  2007年   172篇
  2006年   144篇
  2005年   168篇
  2004年   149篇
  2003年   134篇
  2002年   97篇
  2001年   33篇
  2000年   42篇
  1999年   46篇
  1998年   27篇
  1997年   24篇
  1996年   28篇
  1995年   17篇
  1994年   13篇
  1993年   21篇
  1992年   21篇
  1991年   21篇
  1990年   27篇
  1989年   14篇
  1988年   20篇
  1987年   19篇
  1986年   18篇
  1985年   23篇
  1984年   11篇
  1983年   12篇
  1982年   12篇
  1981年   15篇
  1980年   6篇
  1979年   13篇
  1976年   8篇
  1975年   8篇
  1974年   5篇
  1972年   9篇
  1966年   5篇
排序方式: 共有3428条查询结果,搜索用时 78 毫秒
101.
Helicobacter pylori infects approximately half of the world's population and the bacterium is associated with gastric cancer and peptic and duodenal ulcers. In this study, Surface Enhanced Laser Desorption /Ionization time-of-flight mass spectrometry (SELDI-TOF-MS) was used to identify the biomarkers from H. pylori infected gastric epithelial cells (GEC) to understand key mechanisms associated with pathogenesis. Using different chip surfaces, differential protein expression profile of GEC was obtained and several upregulated or downregulated biomarkers were detected on GEC, following H. pylori infection. Four different H. pylori infected GECs were compared based on their expression of MHC class II, a receptor reported to trigger apoptosis. One biomarker was identified in H. pylori infected GEC as Annexin A2 (Annexin II) from the flow through of the anion-exchange resin. The increased expression of Annexin II in GEC following H. pylori infection was further confirmed by Western Blot analyses and indicates its involvement in H. pylori pathogenesis.  相似文献   
102.
Unidentified lactic acid bacterium (LAB) isolates which had mainly been detected in spoiled, marinated, modified atmosphere packaged (MAP) broiler meat products during two previous studies, were identified and analyzed for their phenotypic properties and the capability to produce biogenic amines. To establish the taxonomic position of these isolates, 16S rRNA gene sequence analysis, numerical analysis of ribopatterns, and DNA-DNA hybridization experiments were done. Unexpectedly for a meat-spoilage-associated LAB, the strains utilized glucose very weakly. According to the API 50 CHL test, arabinose and xylose were the only carbohydrates strongly fermented. None of the six strains tested for production of histamine, tyramine, tryptamine, phenylethylamine, putrescine, and cadaverine were able to produce these main meat-associated biogenic amines in vitro. The polyphasic taxonomy approach showed that these strains represent a new Lactobacillus species. The six isolates sequenced for the 16S rRNA encoding genes shared the highest similarity (95.0 to 96.3%) with the sequence of the Lactobacillus durianis type strain. In the phylogenetic tree, these isolates formed a distinct cluster within the Lactobacillus reuteri group, which also includes L. durianis. Numerical analyses of HindIII-EcoRI ribotypes placed all isolates together in a cluster with seven subclusters well separated from the L. reuteri group reference strains. The DNA-DNA hybridization levels between Lactobacillus sp. nov. isolates varied from 67 to 96%, and low hybridization levels (3 to 15%) were obtained with the L. durianis type strain confirming that these isolates belong to the same species different from L. durianis. The name Lactobacillus oligofermentans sp. nov. is proposed, with strain LMG 22743T (also known as DSM 15707T or AMKR18T) as the type strain.  相似文献   
103.
Nonaspanins constitute a family of proteins, also called TM9SF, characterized by a large non-cytoplasmic domain and nine putative transmembrane domains. This family is highly conserved through evolution and comprises three members in Saccharomyces cerevisiae, Dictyostelium discoideum, and Drosophila melanogaster, and four members are reported in mammals (TM9SF1–TM9SF4). Genetic studies in Dictyostelium and Drosophila have shown that TM9SF members are required for adhesion and phagocytosis in innate immune response, furthermore, human TM9SF1 plays a role in the regulation of autophagy and human TM9SF4 in tumor cannibalism. Here we report that the zebrafish genome encodes five members of this family, TM9SF1–TM9SF5, which show high level of sequence conservation with the previously reported members. Expression analysis in zebrafish showed that all members are maternally expressed and continue to be present throughout embryogenesis to adults. Gene expression could not be regulated by pathogen-associated molecular patterns such as LPS, CpG, or Poly I:C. By bioinformatic analyses of 80 TM9SF protein sequences from yeast, plants, and animals, we confirmed a very conserved protein structure. An evolutionary conserved immunoreceptor tyrosine-based inhibition motif has been detected in the cytoplasmic domain between transmembrane domain (TM) 7 and TM8 in TM9SF1, TM9SF2, TM9SF4 and TM9SF5, and at the extreme C-terminal end of TM9SF4. Finally, a conserved TRAF2 binding domain could also be predicted in the cytoplasmic regions of TM9SF2, TM9SF3, TM9SF4, and TM9SF5. This confirms the hypothesis that TM9SF proteins may play a regulatory role in a specific and ancient cellular mechanism that is involved in innate immunity.  相似文献   
104.
Plate counting and four culture-independent flow cytometric assays were used to determine the viability and intrinsic properties of three probiotic strains during storage. The strains showed reduction in plate counts but were able to maintain esterase activity, intact cytoplasmic membrane, and pH gradient. The apparently uncultivable probiotic cells were active and stress resistant.  相似文献   
105.
106.
L-648,051, sodium 4-[3-(4-acetyl-3-hydroxy-2-propylphenoxy) propylsulfonyl]-gamma-oxo-benzenebutanoate is a selective and competitive inhibitor of [3H]leukotriene D4 (KB value of 4.0 microM) and to a lesser extent [3H]leukotriene C4 (Ki value of 36.7 microM) binding in guinea pig lung homogenates. Functionally, it selectively antagonized contractions of guinea pig trachea induced by leukotrienes C4, D4, E4, and F4 in concentrations that did not antagonize contractions induced by acetylcholine, histamine, serotonin, prostaglandin F2 alpha, or U-44069 (endoperoxide analogue). Schild plot analysis indicated that L-648,051 competitively antagonized contractions of guinea pig ileum induced by leukotriene D4 (pA2 7.7) and contractions of trachea induced by leukotrienes D4, E4, and F4 (pA2 7.3, 7.4, and 7.5, respectively). Contractions of guinea pig trachea induced by leukotriene C4 were inhibited in a noncompetitive fashion (Schild plot slope, 0.45). Developed contractions of trachea induced by the leukotrienes were rapidly reversed by L-648,051 greater than FPL-55712 greater than L-649,923. Intravenous L-648,051 selectively blocked bronchoconstriction induced in anaesthetized guinea pigs by intravenous leukotrienes C4, D4, and E4 but not that induced by arachidonic acid, serotonin, U-44069, or acetylcholine. The compound displayed poor activity following intraduodenal administration. The profile of activity for L-648,051 indicates that it may be a useful topical agent for studying the role of leukotrienes in diseases such as bronchial asthma.  相似文献   
107.
Hypertrophic cardiomyopathy (HCM) is an autosomal dominantly inherited disease of the cardiac sarcomere, caused by numerous mutations in genes encoding protein components of this structure. Mutation carriers are at risk of sudden cardiac death, mostly as adolescents or young adults. The reproductive disadvantage incurred may explain both the global occurrence of diverse independent HCM-associated mutations and the rare reports of founder effects within populations. We have investigated whether this holds true for two South African subpopulations, one of mixed ancestry and one of northern-European descent. Previously, we had detected three novel mutations-Ala797Thr in the beta-myosin heavy-chain gene (betaMHC), Arg92Trp in the cardiac troponin T gene (cTnT), and Arg645His in the myosin-binding protein C gene (MyBPC)-and two documented betaMHC mutations (Arg403Trp and Arg249Gln). Here we report three additional novel mutations-Gln499Lys in betaMHC and Val896Met and Deltac756 in MyBPC-and the documented betaMHC Arg719Gln mutation. Seven of the nine HCM-causing mutations arose independently; no conclusions can be drawn for the remaining two. However, the betaMHC Arg403Trp and Ala797Thr and cTnT Arg92Trp mutations were detected in another one, eight, and four probands, respectively, and haplotype analysis in families carrying these recurring mutations inferred their origin from three common ancestors. The milder phenotype of the betaMHC mutations may account for the presence of these founder effects, whereas population dynamics alone may have overridden the reproductive disadvantage incurred by the more lethal, cTnT Arg92Trp mutation.  相似文献   
108.
Many mutations in rpsL cause resistance to, or dependence on, streptomycin and are restrictive (hyperaccurate) in translation. Dependence on streptomycin and hyperaccuracy can each be reversed phenotypically by mutations in either rpsD or rpsE . Such compensatory mutations have been shown to have a ram phenotype (ribosomal ambiguity), increasing the level of translational errors. We have shown recently that restrictive rpsL alleles are also associated with a loss of virulence in Salmonella typhimurium . To test whether ram mutants could reverse this loss of virulence, we have isolated a set of rpsD alleles in Salmonella typhimurium . We found that the rpsD alleles restore the virulence of strains carrying restrictive rpsL alleles to a level close to that of the wild type. Unexpectedly, three out of seven mutant rpsD alleles tested have phenotypes typical of restrictive alleles of rpsL , being resistant to streptomycin and restrictive (hyperaccurate) in translation. These phenotypes have not been previously associated with the ribosomal protein S4. Furthermore, all seven rpsD alleles (four ram and three restrictive) can phenotypically reverse the hyperaccuracy associated with restrictive alleles of rpsL . This is the first demonstration that such compensations do not require that the compensating rpsD allele has a ribosomal ambiguity ( ram ) phenotype.  相似文献   
109.
Collagen prolyl 4-hydroxylases (C-P4Hs) catalyze the formation of the 4-hydroxyproline residues that are essential for the generation of triple helical collagen molecules. The vertebrate C-P4Hs I, II, and III are [alpha(I)]2beta2, [alpha(II)]2beta2, and [alpha(III)]2beta2 tetramers with identical beta subunits. We generated mice with targeted inactivation of the P4ha1 gene encoding the catalytic alpha subunit of C-P4H I to analyze its specific functions. The null mice died after E10.5, showing an overall developmental delay and a dilated endoplasmic reticulum in their cells. The capillary walls were frequently ruptured, but the capillary density remained unchanged. The C-P4H activity level in the null embryos and fibroblasts cultured from them was 20% of that in the wild type, being evidently due to the other two isoenzymes. Collagen IV immunofluorescence was almost absent in the basement membranes of the null embryos, and electron microscopy revealed disrupted basement membranes, while immunoelectron microscopy showed a lack of collagen IV in them. The amount of soluble collagen IV was increased in the null embryos and cultured null fibroblasts, indicating a lack of assembly of collagen IV molecules into insoluble structures, probably due to their underhydroxylation and hence abnormal conformation. In contrast, the null embryos had collagen I and III fibrils with a typical cross-striation pattern but slightly increased diameters, and the null fibroblasts secreted fibril-forming collagens, although less efficiently than wild-type cells. The primary cause of death of the null embryos was thus most likely an abnormal assembly of collagen IV.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号