首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2645篇
  免费   187篇
  2832篇
  2023年   18篇
  2022年   31篇
  2021年   68篇
  2020年   32篇
  2019年   42篇
  2018年   46篇
  2017年   47篇
  2016年   93篇
  2015年   168篇
  2014年   168篇
  2013年   185篇
  2012年   259篇
  2011年   204篇
  2010年   130篇
  2009年   113篇
  2008年   151篇
  2007年   153篇
  2006年   124篇
  2005年   141篇
  2004年   131篇
  2003年   112篇
  2002年   77篇
  2001年   14篇
  2000年   17篇
  1999年   28篇
  1998年   20篇
  1997年   15篇
  1996年   20篇
  1995年   14篇
  1994年   8篇
  1993年   15篇
  1992年   14篇
  1991年   11篇
  1990年   16篇
  1989年   8篇
  1988年   12篇
  1987年   7篇
  1986年   10篇
  1985年   10篇
  1984年   5篇
  1983年   6篇
  1981年   8篇
  1980年   5篇
  1979年   11篇
  1976年   7篇
  1975年   8篇
  1974年   3篇
  1972年   5篇
  1966年   5篇
  1931年   3篇
排序方式: 共有2832条查询结果,搜索用时 15 毫秒
781.
INSIGs are proteins that underlie sterol regulation of the mammalian proteins SCAP (SREBP cleavage activating protein) and HMG-CoA reductase (HMGR). The INSIGs perform distinct tasks in the regulation of these effectors: they promote ER retention of SCAP, but ubiquitin-mediated degradation of HMGR. Two questions that arise from the discovery and study of INSIGs are: how do they perform these distinct tasks, and how general are the actions of INSIGs in biology? We now show that the yeast INSIG homologs NSG1 and NSG2 function to control the stability of yeast Hmg2p, the HMGR isozyme that undergoes regulated ubiquitination. Yeast Nsgs inhibit degradation of Hmg2p in a highly specific manner, by directly interacting with the sterol-sensing domain (SSD)-containing transmembrane region. Nsg1p functions naturally to limit degradation of Hmg2p when both proteins are at native levels, indicating a long-standing functional interplay between these two classes of proteins. One way to unify the known, disparate actions of INSIGs is to view them as known adaptations of a chaperone dedicated to SSD-containing client proteins.  相似文献   
782.
The templates of innate immunity have ancient origins. Thus, such model animals as the fruit fly, Drosophila melanogaster, can be used to identify gene products that also play a key role in the innate immunity in mammals. We have used oligonucleotide microarrays to identify genes that are responsive to gram-negative bacteria in Drosophila macrophage-like S2 cells. In total, 53 genes were induced by greater than threefold in response to Escherichia coli. The induction of all these genes was peptidoglycan recognition protein LC (PGRP-LC) dependent. Twenty-two genes including 10 of the most strongly induced genes are also known to be up-regulated by septic injury in vivo. Importantly, we identified 31 genes that are not known to respond to bacterial challenge. We carried out targeted dsRNA treatments to assess the functional importance of these gene products for microbial recognition, phagocytosis and antimicrobial peptide release in Drosophila S2 cells in vitro. RNAi targeting three of these genes, CG7097, CG15678 and beta-Tubulin 60D, caused altered antimicrobial peptide release in vitro. Our results indicate that the JNK pathway is essential for normal antimicrobial peptide release in Drosophila in vitro.  相似文献   
783.
Germination timing of Arabidopsis thaliana displays strong plasticity to geographic location and seasonal conditions experienced by seeds. We identified which plastic responses were adaptive using recombinant inbred lines in a field manipulation of geographic location (Kentucky, KY; Rhode Island, RI), maternal photoperiod (14-h and 10-h days), and season of dispersal (June and November). Transgressive segregation created novel genotypes that had either higher fitness or lower fitness in certain environments than either parent. Natural selection on germination timing and its variation explained 72% of the variance in fitness among genotypes in KY, 30% in June-dispersed seeds in RI, but only 4% in November-dispersed seeds in RI. Therefore, natural selection on germination timing is an extremely efficient sieve that can determine which genotypes can persist in some locations, and its efficiency is geographically variable and depends on other aspects of life history. We found no evidence for adaptive responses to maternal photoperiod during seed maturation. We did find adaptive plasticity to season of seed dispersal in RI. Seeds dispersed in June postponed germination, which was adaptive, while seeds dispersed in November accelerated germination, which was also adaptive. We also found maladaptive plasticity to geographic location for seeds dispersed in June, such that seeds dispersed in KY germinated much sooner than the optimum time. Consequently, bet hedging in germination timing was favorable in KY; genotypes with more variation in germination timing had higher fitness because greater variation was associated with postponed germination. Selection on germination timing varied across geographic location, indicating that germination timing can be a critical stage in the establishment of genotypes in new locations. The rate of evolution of germination timing may therefore strongly influence the rate at which species can expand their range.  相似文献   
784.
Host parasite coevolution assumes pathogen specific genetic variation in host immune defense. Also, if immune function plays a role in the evolution of life history, allocation to immune function should be heritable. We conducted a cross-fostering experiment to test the relative importance of genetic and environmental sources of variation in T-cell mediated inflammatory response and antigen specific antibody responses in the great tits Parus major. Cell mediated response was measured during the nestling period and antibody response against two novel antigens was measured in two-month-old juveniles raised in a laboratory. We found no effect of nest of origin, but a strong effect of rearing environment on cell mediated response. In contrast, we found a large effect of nest of origin on antibody response to both, diphtheria and tetanus antigens suggesting genetic variation. In a model where responses to both antigens were analyzed simultaneously, we found a significant origin-by-antigen interaction, suggesting that genetic variation in antibody responses is specific to particular antigens. Large genetic variation in antibody responses found in this study suggests that host immune defense may evolve and specificity of genetic variation in antibody responses suggests that host defense may be pathogen specific as models of host-parasite coevolution suggest. Our results also suggest that different immune traits are to some degree independent and outcome of the interactions between immune function and the environment may depend on the particular immune trait measured.  相似文献   
785.
Precursors of cochlear and vestibular hair cells of the inner ear exit the cell cycle at midgestation. Hair cells are mitotically quiescent during late-embryonic differentiation stages and postnatally. We show here that the retinoblastoma gene Rb and the encoded protein pRb are expressed in differentiating and mature hair cells. In addition to Rb, the cyclin dependent kinase inhibitor (CKI) p21 is expressed in developing hair cells, suggesting that p21 is an upstream effector of pRb activity. p21 apparently cooperates with other CKIs, as p21-null mice exhibited an unaltered inner ear phenotype. By contrast, Rb inactivation led to aberrant hair cell proliferation, as analysed at birth in a loss-of-function/transgenic mouse model. Supernumerary hair cells expressed various cell type-specific differentiation markers, including components of stereocilia. The extent of alterations in stereociliary bundle morphology ranged from near-normal to severe disorganization. Apoptosis contributed to the mutant phenotype, but did not compensate for the production of supernumerary hair cells, resulting in hyperplastic sensory epithelia. The Rb-null-mediated proliferation led to a distinct pathological phenotype, including multinucleated and enlarged hair cells, and infiltration of hair cells into the mesenchyme. Our findings demonstrate that the pRb pathway is required for hair cell quiescence and that manipulation of the cell cycle machinery disrupts the coordinated development within the inner ear sensory epithelia.  相似文献   
786.
Low concentrations of selenium (Se) predict mortality and cardiovascular diseases in some populations. The effect of Se on in vivo indicators of oxidative stress and inflammation, two important features of atherosclerosis, in human populations is largely unexplored. This study investigated the longitudinal association between serum selenium (s-Se) and a golden standard indicator of oxidative stress in vivo (8-iso-prostaglandin F2alpha, a major F2-isoprostane), an indicator of cyclooxygenase (COX)-mediated inflammation (prostaglandin F2alpha), high sensitive C-reactive protein (hsCRP), interleukin-6 (IL-6) and serum amyloid A protein (SAA) in a follow-up study of 27 years. The s-Se was measured in 615 Swedish men at 50 years of age in a health investigation. The status of oxidative stress and inflammation was evaluated in a re-investigation 27 years later by quantification of urinary 8-iso-PGF2alpha and 15-keto-dihydro-PGF2alpha (a major metabolite of PGF2alpha) and serum hsCRP, SAA and IL-6. Men in the highest quartile of s-Se at age 50 had decreased levels of 8-iso-PGF2alpha compared to all lower quartiles and decreased levels of PGF2alpha compared to all lower quartiles at follow-up. These associations were independent of BMI, diabetes, hyperlipidemia, hypertension, smoking, alpha-tocopherol and beta-carotene at baseline. The s-Se was not associated with hsCRP, SAA or IL-6 at follow-up. In conclusion, high concentrations of s-Se predict reduced levels of oxidative stress and subclinical COX-mediated (but not cytokine-mediated) inflammation in a male population. The associations between Se, oxidative stress and inflammation, respectively, might be related to the proposed cardiovascular protective property of Se.  相似文献   
787.
Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), a potent virus for mammalian cell gene delivery, possesses an ability to transduce mammalian cells without viral replication. We examined the role of the cellular cytoskeleton in the cytoplasmic trafficking of viral particles toward the nucleus in human hepatic cells. Microscopic studies showed that capsids were found in the nucleus after either viral inoculation or cytoplasmic microinjection of nucleocapsids. The presence of microtubule (MT) depolymerizing agents caused the amount of nuclear capsids to increase. Overexpression of p50/dynamitin, an inhibitor of dynein-dependent endocytic trafficking from peripheral endosomes along MTs toward late endosomes, did not significantly affect the amount of nuclear accumulation of nucleocapsids in the inoculated cells, suggesting that viral nucleocapsids are released into the cytosol during the early stages of the endocytic pathway. Moreover, studies with recombinant viruses containing the nuclear-targeted expression beta-galactosidase gene (beta-gal) showed a markedly increased level in the cellular expression of beta-galactosidase in the presence of MT-disintegrating drugs. The maximal increase in expression at 10 h postinoculation was observed in the presence of 80 muM nocodazole or 10 muM vinblastine. Together, these data suggest that the intact MTs constitute a barrier to baculovirus transport toward the nucleus.  相似文献   
788.
Shwachman-Diamond Syndrome (SDS) is an autosomal recessive disorder characterized by bone marrow failure with significant predisposition to the development of poor prognosis myelodysplasia and leukemia, exocrine pancreatic failure and metaphyseal chondrodysplasia. Although the SBDS gene mutated in this disorder is highly conserved in Archaea and all eukaryotes, the function is unknown. To interpret the molecular consequences of SDS-associated mutations, we have solved the crystal structure of the Archaeoglobus fulgidus SBDS protein orthologue at a resolution of 1.9 angstroms, revealing a three domain architecture. The N-terminal (FYSH) domain is the most frequent target for disease mutations and contains a novel mixed alpha/beta-fold identical to the single domain yeast protein Yhr087wp that is implicated in RNA metabolism. The central domain consists of a three-helical bundle, whereas the C-terminal domain has a ferredoxin-like fold. By genetic complementation analysis of the essential Saccharomyces cerevisiae SBDS orthologue YLR022C, we demonstrate an essential role in vivo for the FYSH domain and the central three-helical bundle. We further show that the common SDS-related K62X truncation is non-functional. Most SDS-related missense mutations that alter surface epitopes do not impair YLR022C function, but mutations affecting residues buried in the hydrophobic core of the FYSH domain severely impair or abrogate complementation. These data are consistent with absence of homozygosity for the common K62X truncation mutation in individuals with SDS, indicating that the SDS disease phenotype is a consequence of expression of hypomorphic SBDS alleles and that complete loss of SBDS function is likely to be lethal.  相似文献   
789.
Epithelial tubes are found in many vital organs and require uniform and correct tube diameters for optimal function. Tube size depends on apical membrane growth and subapical cytoskeletal reorganization, but the cues that coordinate these events to ensure functional tube shape remain elusive. We find that epithelial tubes in the Drosophila trachea require luminal chitin polysaccharides to attain the correct diameter. Tracheal chitin forms a broad transient filament within the tubes during the restricted period of expansion. Loss of chitin causes tubular constrictions and cysts associated with irregular subapical cytoskeletal organization, without affecting epithelial integrity and polarity. Analysis of previously identified tube expansion mutants in genes encoding septate junction proteins further suggests that septate junction components may function in tubulogenesis through their role in luminal matrix assembly. We propose that the transient luminal protein/polysaccharide matrix is sensed by the epithelial cells and coordinates cytoskeletal organization to ensure uniform lumen diameter.  相似文献   
790.
The E-Cadherin-catenin complex plays a critical role in epithelial cell-cell adhesion, polarization, and morphogenesis. Here, we have analyzed the mechanism of Drosophila E-Cadherin (DE-Cad) localization. Loss of function of the Drosophila exocyst components sec5, sec6, and sec15 in epithelial cells results in DE-Cad accumulation in an enlarged Rab11 recycling endosomal compartment and inhibits DE-Cad delivery to the membrane. Furthermore, Rab11 and Armadillo interact with the exocyst components Sec15 and Sec10, respectively. Our results support a model whereby the exocyst regulates DE-Cadherin trafficking, from recycling endosomes to sites on the epithelial cell membrane where Armadillo is located.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号