首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1120篇
  免费   85篇
  1205篇
  2023年   6篇
  2022年   16篇
  2021年   18篇
  2020年   14篇
  2019年   18篇
  2018年   19篇
  2017年   18篇
  2016年   26篇
  2015年   54篇
  2014年   63篇
  2013年   97篇
  2012年   88篇
  2011年   73篇
  2010年   48篇
  2009年   42篇
  2008年   57篇
  2007年   60篇
  2006年   55篇
  2005年   50篇
  2004年   37篇
  2003年   34篇
  2002年   42篇
  2001年   11篇
  2000年   12篇
  1999年   12篇
  1998年   16篇
  1997年   8篇
  1996年   12篇
  1995年   6篇
  1993年   10篇
  1992年   11篇
  1989年   8篇
  1988年   10篇
  1987年   5篇
  1986年   4篇
  1984年   7篇
  1983年   6篇
  1982年   6篇
  1981年   9篇
  1980年   7篇
  1977年   4篇
  1975年   5篇
  1973年   5篇
  1969年   3篇
  1958年   3篇
  1957年   3篇
  1907年   3篇
  1900年   4篇
  1854年   3篇
  1852年   5篇
排序方式: 共有1205条查询结果,搜索用时 0 毫秒
91.
The regulation of intracellular pH during intense muscle contractions occurs via a number of different transport systems [e.g., monocarboxylate transporters (MCTs)] and via intracellular buffering (beta m(in vitro)). The aim of this study was to investigate the effects of an acute bout of high-intensity exercise on both MCT relative abundance and beta m(in vitro) in humans. Six active women volunteered for this study. Biopsies of the vastus lateralis were obtained at rest and immediately after 45 s of exercise at 200% of maximum O2 uptake. Beta m(in vitro) was determined by titration, and MCT relative abundance was determined in membrane preparations by Western blots. High-intensity exercise was associated with a significant decrease in both MCT1 (-24%) and MCT4 (-26%) and a decrease in beta m(in vitro) (-11%; 135 +/- 3 to 120 +/- 2 micromol H+ x g dry muscle(-1) x pH(-1); P < 0.05). These changes were consistently observed in all subjects, and there was a significant correlation between changes in MCT1 and MCT4 relative abundance (R2 = 0.92; P < 0.05). In conclusion, a single bout of high-intensity exercise decreased both MCT relative abundance in membrane preparations and beta m(in vitro). Until the time course of these changes has been established, researchers should consider the possibility that observed training-induced changes in MCT and beta m(in vitro) may be influenced by the acute effects of the last exercise bout, if the biopsy is taken soon after the completion of the training program. The implications that these findings have for lactate (and H+) transport following acute, exhaustive exercise warrant further investigation.  相似文献   
92.

Background

The incidence of acute coronary syndrome (ACS) in young people (≤65 years) is continuously rising. While prognostic factors in ACS are well-investigated less attention has been paid to their age-dependent prognostic value and their particular relevance in younger patients. The aim of our study was to assess the age-dependent prognostic impact of butyrylcholinesterase (BChE).

Methods

Retrospective cohort study including 624 patients with ACS. Patients were stratified by age into equal groups (n = 208) corresponding to “young patients” (45–64 years), "middle-aged patients” (65–84 years) and “old patients” (85–100 years). Cox regression hazard analysis was used to assess the influence of BChE on survival.

Results

After a mean follow-up time of 4.0 (interquartile range [IQR] 2.0–6.4) years, 154 patients (24.7%) died due to a cardiac cause. In the overall cohort, BChE was indirectly associated with cardiac mortality-free survival (adjusted hazard ratio (HR): 0.70 (95% confidence interval [CI] 0.53–0.93, p = 0.01). The primary-analysis of BChE by age strata showed the strongest effect in the age group 45–64 years with an adjusted HR per 1-SD of 0.28 (95% CI 0.12–0.64, p = 0.003), a weaker association with mortality in middle aged (65–84 years: adjusted HR per 1-SD 0.66 [95% CI: 0.41–1.06], p = 0.087), and no association in older patients (85–100 years: adjusted HR per 1-SD 0.89 [95% CI: 0.58–1.38], p = 0.613).

Conclusion

BChE is a strong predictor for cardiac mortality specifically in younger patients with ACS aged between 45 and 64 years. No significant association of BChE with cardiac-mortality was detected in other age classes.  相似文献   
93.
Herein, we demonstrate the efficacy of an unbiased proteomics screening approach for studying protein expression changes in the KC-Tie2 psoriasis mouse model, identifying multiple protein expression changes in the mouse and validating these changes in human psoriasis. KC-Tie2 mouse skin samples (n = 3) were compared with littermate controls (n = 3) using gel-based fractionation followed by label-free protein expression analysis. 5482 peptides mapping to 1281 proteins were identified and quantitated: 105 proteins exhibited fold-changes ≥2.0 including: stefin A1 (average fold change of 342.4 and an average p = 0.0082; cystatin A, human ortholog); slc25a5 (average fold change of 46.2 and an average p = 0.0318); serpinb3b (average fold change of 35.6 and an average p = 0.0345; serpinB1, human ortholog); and kallikrein related peptidase 6 (average fold change of 4.7 and an average p = 0.2474; KLK6). We independently confirmed mouse gene expression-based increases of selected genes including serpinb3b (17.4-fold, p < 0.0001), KLK6 (9-fold, p = 0.002), stefin A1 (7.3-fold; p < 0.001), and slc25A5 (1.5-fold; p = 0.05) using qRT-PCR on a second cohort of animals (n = 8). Parallel LC/MS/MS analyses on these same samples verified protein-level increases of 1.3-fold (slc25a5; p < 0.05), 29,000-fold (stefinA1; p < 0.01), 322-fold (KLK6; p < 0.0001) between KC-Tie2 and control mice. To underscore the utility and translatability of our combined approach, we analyzed gene and protein expression levels in psoriasis patient skin and primary keratinocytes versus healthy controls. Increases in gene expression for slc25a5 (1.8-fold), cystatin A (3-fold), KLK6 (5.8-fold), and serpinB1 (76-fold; all p < 0.05) were observed between healthy controls and involved lesional psoriasis skin and primary psoriasis keratinocytes. Moreover, slc25a5, cystatin A, KLK6, and serpinB1 protein were all increased in lesional psoriasis skin compared with normal skin. These results highlight the usefulness of preclinical disease models using readily-available mouse skin and demonstrate the utility of proteomic approaches for identifying novel peptides/proteins that are differentially regulated in psoriasis that could serve as sources of auto-antigens or provide novel therapeutic targets for the development of new anti-psoriatic treatments.One in three individuals in the United States is afflicted with a skin disease, with ∼2–3% of the American population suffering from psoriasis (13) a chronic, immune-mediated inflammatory skin disease characterized by well-demarcated areas of “involved” red, raised, and scaly skin adjacent to areas of “uninvolved” normal appearing skin. The underlying cause of psoriasis remains unknown and the specific signals that trigger disease onset have yet to be identified; however, several lines of evidence suggest the involvement of antigen-specific T cells, although the antigens involved remain elusive (4). A combination of human and animal studies have led to the understanding that in patients with a genetically susceptible background, some initiating stimulus, often a stressful event, an injury to the skin, or an infection, leads to a coordinated series of signaling events involving cytokines, resident skin cells, and skin-infiltrating immune cells, that once started, initiates a vicious pro-inflammatory hyperproliferative cycle. Once initiated, this cycle perpetuates sustained inflammatory responses. Intervention at several points in this cycle results in clinical resolution, however, durable remission and/or permanent clearance has not yet been achieved.Current psoriasis therapies are directed toward symptomatic relief and none of them represent a cure for this chronic illness. Current treatments include topical therapies, phototherapy, and systemic administration of immune-suppressants, anti-metabolites, oral retinoids, and biologics targeting immune cells or inflammatory cytokines (5, 6). Many of the most effective therapeutics however, also have the greatest adverse reactions; moreover, psoriasis can become resistant to specific therapies over time. Therefore, an ongoing need for discovery of new biological pathways and targets for psoriasis is obvious.We studied a mouse model of psoriasis using an unbiased proteomics screening approach to identify dysregulated peptides of interest in psoriasiform-inflamed mouse skin and ultimately compared these findings to psoriasis patient skin. We used in-gel label-free protein expression analysis to observe quantitative changes in protein expression. The peptides that were determined to be top-scoring from a statistical perspective and of biological interest were subjected to further analysis and confirmation using a targeted mass spectrometry approach along with qRT-PCR to assess gene expression in a distinct set of animal samples. Further validation of the translational importance of these novel proteins was then conducted in primary keratinocytes expanded from psoriasis skin as well as human skin taken directly from psoriasis patient lesional and nonlesional areas. The results of these experiments confirm the ability of a discovery in-gel label-free expression model to identify proteins that are in the moderate to high abundance range that are significantly different in their distribution between control and genetically modified psoriasiform mouse skin and demonstrate the usefulness of mouse models and proteomic approaches for identifying novel proteins that are differentially regulated in human psoriasis, providing future biomarkers and targets for development of translational approaches to disease improvement.  相似文献   
94.
We used publically available data on duck breeding distribution and recently compiled geospatial data on upland habitat and environmental conditions to develop a spatially explicit model of breeding duck populations across the entire Prairie Pothole Region (PPR). Our spatial population models were able to identify key areas for duck conservation across the PPR and predict between 62.1 – 79.1% (68.4% avg.) of the variation in duck counts by year from 2002 – 2010. The median difference in observed vs. predicted duck counts at a transect segment level was 4.6 ducks. Our models are the first seamless spatially explicit models of waterfowl abundance across the entire PPR and represent an initial step toward joint conservation planning between Prairie Pothole and Prairie Habitat Joint Ventures. Our work demonstrates that when spatial and temporal variation for highly mobile birds is incorporated into conservation planning it will likely increase the habitat area required to support defined population goals. A major goal of the current North American Waterfowl Management Plan and subsequent action plan is the linking of harvest and habitat management. We contend incorporation of spatial aspects will increase the likelihood of coherent joint harvest and habitat management decisions. Our results show at a minimum, it is possible to produce spatially explicit waterfowl abundance models that when summed across survey strata will produce similar strata level population estimates as the design-based Waterfowl Breeding Pair and Habitat Survey (r2 = 0.977). This is important because these design-based population estimates are currently used to set duck harvest regulations and to set duck population and habitat goals for the North American Waterfowl Management Plan. We hope this effort generates discussion on the important linkages between spatial and temporal variation in population size, and distribution relative to habitat quantity and quality when linking habitat and population goals across this important region.  相似文献   
95.
Granulocyte-colony-stimulating-factor (G-CSF) induces mobilization of progenitor cells but may also exert pro-inflammatory and pro-thrombotic effects. Treatment with recombinant G-CSF after acute myocardial infarction is currently under examination and has been associated with in-stent restenosis. However, it is not known whether plasma levels of endogenous G-CSF are also associated with an increased cardiovascular risk. Therefore we included 280 patients with angiographically proven stable coronary artery disease. G-CSF was measured by specific ELISA and patients were followed for a median of 30 months for the occurrence of major adverse cardiovascular events (MACE: death, myocardial infarction, re-hospitalization). Those with cardiac events during follow-up showed significant higher G-CSF levels (32.3 pg/mL IQR 21.4–40.5 pg/mL vs. 24.6 pg/mL IQR 16.4–34.9 pg/mL; p<0.05) at baseline. Patients with G-CSF plasma levels above the median had a 2-fold increased risk for MACE (p<0.05). This was independent from established cardiovascular risk factors. In addition, G-CSF above the median was a predictor of clinical in-stent restenosis after implantation of bare-metal stents (6.6% vs. 19.4%; p<0.05) but not of drug-eluting stents (7.7% vs. 7.6%; p = 0.98). This data suggests that endogenous plasma levels of G-CSF predict cardiovascular events independently from established cardiac risk factors and are associated with increased in-stent restenosis rates after implantation of bare metal stents.  相似文献   
96.
The conformational dynamics of the histidine ABC transporter HisQMP2 from Salmonella enterica serovar Typhimurium, reconstituted into liposomes, is studied by site-directed spin labeling and double electron–electron resonance spectroscopy in the absence of nucleotides, in the ATP-bound, and in the post-hydrolysis state. The results show that the inter-dimer distances as measured between the Q-loops of HisP2 in the intact transporter resemble those determined for the maltose transporter in all three states of the hydrolysis cycle. Only in the presence of liganded HisJ the closed conformation of the nucleotide binding sites is achieved revealing the transmembrane communication of the presence of substrate. Two conformational states can be distinguished for the periplasmic moiety of HisQMP2 as detected by differences in distributions of interspin distances between positions 86 and 96 or 104 and 197. The observed conformational changes are correlated to proposed open, semi-open and closed conformations of the nucleotide binding domains HisP2. Our results are in line with a rearrangement of transmembrane helices 4 and 4′ of HisQM during the closed to the semi-open transition of HisP2 driven by the reorientation of the coupled helices 3a and 3b to occur upon hydrolysis.  相似文献   
97.
Protein kinase C (PKC) is a family of at least 10 isozymes involved in the activation of different signal transduction pathways. The exact function of these isozymes is not known at present. Isozyme-selective inhibitors would be important to explain the function of the different PKCs and are anticipated to have pharmaceutical potential. Here we report that the small organic molecule BAS 02104951 [5-(1,3-benzodioxol-5-ylmethylene)-1-(phenylmethyl)-2,4,6(1H,3H,5H)-pyrimidinetrion], a barbituric acid derivative, inhibited PKCη and PKCε in vitro (IC(50) 18 and 36 μM, respectively). BAS 02104951 also inhibited the interaction of PKCε with its adaptor protein receptor for activated C-kinase 2 (RACK2) (IC(50) 28.5 μM). BAS 02104951 also inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced Elk-1 phosphorylation in HeLa cells, translocation of PKCε and PKCη to the membrane following treatment of PC3 cells with TPA. The compound did not inhibit the proliferation of PC3 and HeLa cells. BAS 02104951 can be used as selective inhibitor of PKCε in cells not expressing PKCη and may serve as a basis for the rational development of a selective inhibitor of PKCε or PKCη, or for an inhibitor of the PKCε/RACK2 interaction.  相似文献   
98.
Kinetic model of sucrose accumulation in maturing sugarcane culm tissue   总被引:2,自引:0,他引:2  
Uys L  Botha FC  Hofmeyr JH  Rohwer JM 《Phytochemistry》2007,68(16-18):2375-2392
Biochemically, it is not completely understood why or how commercial varieties of sugarcane (Saccharum officinarum) are able to accumulate sucrose in high concentrations. Such concentrations are obtained despite the presence of sucrose synthesis/breakdown cycles (futile cycling) in the culm of the storage parenchyma. Given the complexity of the process, kinetic modelling may help to elucidate the factors governing sucrose accumulation or direct the design of experimental optimisation strategies. This paper describes the extension of an existing model of sucrose accumulation (Rohwer, J.M., Botha, F.C., 2001. Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem. J. 358, 437-445) to account for isoforms of sucrose synthase and fructokinase, carbon partitioning towards fibre formation, and the glycolytic enzymes phosphofructokinase (PFK), pyrophosphate-dependent PFK and aldolase. Moreover, by including data on the maximal activity of the enzymes as measured in different internodes, a growth model was constructed that describes the metabolic behaviour as sugarcane parenchymal tissue matures from internodes 3-10. While there was some discrepancy between modelled and experimentally determined steady-state sucrose concentrations in the cytoplasm, steady-state fluxes showed a better fit. The model supports a hypothesis of vacuolar sucrose accumulation against a concentration gradient. A detailed metabolic control analysis of sucrose synthase showed that each isoform has a unique control profile. Fructose uptake by the cell and sucrose uptake by the vacuole had a negative control on the futile cycling of sucrose and a positive control on sucrose accumulation, while the control profile for neutral invertase was reversed. When the activities of these three enzymes were changed from their reference values, the effects on futile cycling and sucrose accumulation were amplified. The model can be run online at the JWS Online database (http://jjj.biochem.sun.ac.za/database/uys).  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号