首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4787篇
  免费   339篇
  2023年   26篇
  2022年   45篇
  2021年   81篇
  2020年   60篇
  2019年   61篇
  2018年   70篇
  2017年   79篇
  2016年   111篇
  2015年   247篇
  2014年   263篇
  2013年   313篇
  2012年   429篇
  2011年   377篇
  2010年   230篇
  2009年   200篇
  2008年   309篇
  2007年   313篇
  2006年   306篇
  2005年   231篇
  2004年   231篇
  2003年   224篇
  2002年   235篇
  2001年   45篇
  2000年   44篇
  1999年   54篇
  1998年   50篇
  1997年   31篇
  1996年   36篇
  1995年   48篇
  1994年   21篇
  1993年   35篇
  1992年   21篇
  1991年   21篇
  1990年   24篇
  1989年   13篇
  1988年   15篇
  1987年   15篇
  1986年   19篇
  1985年   17篇
  1984年   20篇
  1983年   19篇
  1982年   21篇
  1981年   10篇
  1979年   10篇
  1978年   14篇
  1977年   19篇
  1976年   9篇
  1975年   10篇
  1974年   12篇
  1971年   6篇
排序方式: 共有5126条查询结果,搜索用时 15 毫秒
991.
992.
993.
Abstract 32 different strains of Escherichia coli isolated from rabbits with diarrhoea were studied for cell-surface properties which may be involved in intestinal colonisation. Strains isolated from diarrhoeic suckling (6 strains) and weaning (26 strains) rabbits which were shown to attach to brush borders in vivo, showed high relative cell-surface hydrophobicity as determined by the Salt Aggregation Test (SAT) when grown on Colonisation Factor Antigen (CFA) agar at 33°C. Cells of these strains grown to express surface hydrophobicity were also defined as high, moderate or low binders of 125I-fibronectin or its 125I-29-kDa fragment in a standard binding assay. Based on these findings, we propose that binding to intestinal cell surface (mucus)-associated fibronectin may be an early important step in intestinal colonisation of the small bowel in enteropathogenic E. coli (EPEC) diarrhoea in rabbits and other animal species.  相似文献   
994.
Two frequent assumptions about the evolution of long-distance migration in birds are that they travel long distances annually to reach food-rich areas for breeding, and that they time their migratory journey to be at staging sites when the latter provide the best feeding conditions. These assumptions have rarely been properly tested, and there is no study in which a species’ major food types have been measured by standardized methods throughout a flyway and over a large part of the year. We here present such data for Eurasian teal (Anas crecca), converted to a common energetic currency, and collected at wintering, spring staging and breeding sites. Teal did not time migration to maximize local food abundance; most birds left wintering and spring staging sites before a sharp increase in invertebrate food abundance occurred. On the other hand, hatching of ducklings coincided with a peak in invertebrate food abundance on boreal breeding lakes. Mean overall food abundance (invertebrates and seeds combined) did not differ between wintering sites in southern France and breeding sites in northern Sweden at the time of breeding. Our results are inconsistent with the hypothesis that long-distance migration in dabbling ducks has evolved because adult birds gain an immediate pay-off in increased food abundance by flying north in spring. However, our data confirm a selective advantage for breeding at higher latitudes, because hatching of ducklings may coincide with a peak in invertebrate emergence and because longer days may increase the duration of efficient foraging.  相似文献   
995.
In recent years, structural information about bacteriorhodopsin has grown substantially with the publication of several crystal structures. However, precise measurements of the chromophore conformation in the various photocycle states are still lacking. This information is critical because twists about the chromophore backbone chain can influence the Schiff base nitrogen position, orientation, and proton affinity. Here, we focus on the C14-C15 bond, using solid-state nuclear magnetic resonance spectroscopy to measure the H-C14-C15-H dihedral angle. In the resting state (bR(568)), we obtain an angle of 164 +/- 4 degrees, indicating a 16 degrees distortion from a planar all-trans chromophore. The dihedral angle is found to decrease to 147 +/- 10 degrees in the early M intermediate (M(o)) and to 150 +/- 4 degrees in the late M intermediate (M(n)). These results demonstrate changes in the chromophore conformation undetected by recent X-ray diffraction studies.  相似文献   
996.
We have developed a method to reliably identify partial membrane protein topologies using the consensus of five topology prediction methods. When evaluated on a test set of experimentally characterized proteins, we find that approximately 90% of the partial consensus topologies are correctly predicted in membrane proteins from prokaryotic as well as eukaryotic organisms. Whole-genome analysis reveals that a reliable partial consensus topology can be predicted for approximately 70% of all membrane proteins in a typical bacterial genome and for approximately 55% of all membrane proteins in a typical eukaryotic genome. The average fraction of sequence length covered by a partial consensus topology is 44% for the prokaryotic proteins and 17% for the eukaryotic proteins in our test set, and similar numbers are found when the algorithm is applied to whole genomes. Reliably predicted partial topologies may simplify experimental determinations of membrane protein topology.  相似文献   
997.
In this study, we analysed morphological, anatomical and physiological effects of polyploidisation in Spathiphyllum wallisii in order to evaluate possible interesting advantages of polyploids for ornamental breeding. Stomatal density was negatively correlated with increased ploidy level. Stomatal size increased in polyploids. Tetraploid Spathiphyllum plants had more ovate and thicker leaves. The inflorescence of tetraploids had a more ovate and thicker spathum, a more cylindrical spadix and a thicker but shorter flower stalk. Biomass production of the tetraploids was reduced, as expressed by lower total dry weights, and tetraploids produced fewer shoots and leaves compared with their diploid progenitors. Furthermore, tetraploid Spathiphyllum plants were more resistant to drought stress compared with diploid plants. After 15 days of drought stress, diploids showed symptoms of wilting, while the tetraploids showed almost no symptoms. Further, measurements of stomatal resistance, leaf water potential, relative water content and proline content indicated that the tetraploid genotypes were more resistant to drought stress compared with the diploids.  相似文献   
998.
Ecosystem services are vital for humans in urban regions. However, urban development poses a great risk for the ability of ecosystems to provide these services. In this paper we first address the most important ecosystem services in functional urban regions in Finland. Well accessible and good quality recreational ecosystem services, for example, provided by urban nature, are an important part of a high-quality living environment and important for public health. Vegetation of urban regions can have a role in carbon dioxide sequestration and thus in climate change mitigation. For instance, estimates of carbon sinks can be compared to total CO2 emissions of an urban region, and the municipality can aim at both increasing carbon sinks and decreasing CO2 emissions with proper land-use planning. Large and contiguous core nature areas, smaller green areas and ecological connections between them are the essence of regional ecological networks and are essential for maintaining interconnected habitats for species and thus biological diversity. Thus, both local and regional level ecological networks are vital for maintaining ecosystem services in urban regions. The impacts of climate change coupled with land-use and land cover change will bring serious challenges for maintaining ecosystem services in urban areas. Although not yet widely used in planning practices, the ecosystem services approach can provide an opportunity for land-use planning to develop ecologically sustainable urban regions. Currently, information on ecosystem services of urban regions is lacking and there is a need to improve the knowledge base for land-use planning.  相似文献   
999.
The boreal biome exchanges large amounts of carbon (C) and greenhouse gases (GHGs) with the atmosphere and thus significantly affects the global climate. A managed boreal landscape consists of various sinks and sources of carbon dioxide (CO2), methane (CH4), and dissolved organic and inorganic carbon (DOC and DIC) across forests, mires, lakes, and streams. Due to the spatial heterogeneity, large uncertainties exist regarding the net landscape carbon balance (NLCB). In this study, we compiled terrestrial and aquatic fluxes of CO2, CH4, DOC, DIC, and harvested C obtained from tall‐tower eddy covariance measurements, stream monitoring, and remote sensing of biomass stocks for an entire boreal catchment (~68 km2) in Sweden to estimate the NLCB across the land–water–atmosphere continuum. Our results showed that this managed boreal forest landscape was a net C sink (NLCB = 39 g C m?2 year?1) with the landscape–atmosphere CO2 exchange being the dominant component, followed by the C export via harvest and streams. Accounting for the global warming potential of CH4, the landscape was a GHG sink of 237 g CO2‐eq m?2 year?1, thus providing a climate‐cooling effect. The CH4 flux contribution to the annual GHG budget increased from 0.6% during spring to 3.2% during winter. The aquatic C loss was most significant during spring contributing 8% to the annual NLCB. We further found that abiotic controls (e.g., air temperature and incoming radiation) regulated the temporal variability of the NLCB whereas land cover types (e.g., mire vs. forest) and management practices (e.g., clear‐cutting) determined their spatial variability. Our study advocates the need for integrating terrestrial and aquatic fluxes at the landscape scale based on tall‐tower eddy covariance measurements combined with biomass stock and stream monitoring to develop a holistic understanding of the NLCB of managed boreal forest landscapes and to better evaluate their potential for mitigating climate change.  相似文献   
1000.
The influence of pH, temperature and carbon source (glucose and maltose) on growth rate and ethanol yield of Dekkera bruxellensis was investigated using a full-factorial design. Growth rate and ethanol yield were lower on maltose than on glucose. In controlled oxygen-limited batch cultivations, the ethanol yield of the different combinations varied from 0.42 to 0.45 g (g glucose)−1 and growth rates varied from 0.037 to 0.050 h−1. The effect of temperature on growth rate and ethanol yield was negligible. It was not possible to model neither growth rate nor ethanol yield from the full-factorial design, as only marginal differences were observed in the conditions tested. When comparing three D. bruxellensis strains and two industrial isolates of Saccharomyces cerevisiae, S. cerevisiae grew five times faster, but the ethanol yields were 0–13% lower. The glycerol yields of S. cerevisiae strains were up to six-fold higher compared to D. bruxellensis, and the biomass yields reached only 72–84% of D. bruxellensis. Our results demonstrate that D. bruxellensis is robust to large changes in pH and temperature and may have a more energy-efficient metabolism under oxygen limitation than S. cerevisiae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号