首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4796篇
  免费   343篇
  2023年   26篇
  2022年   37篇
  2021年   82篇
  2020年   60篇
  2019年   64篇
  2018年   74篇
  2017年   80篇
  2016年   113篇
  2015年   249篇
  2014年   267篇
  2013年   313篇
  2012年   432篇
  2011年   380篇
  2010年   230篇
  2009年   201篇
  2008年   305篇
  2007年   316篇
  2006年   307篇
  2005年   231篇
  2004年   226篇
  2003年   224篇
  2002年   232篇
  2001年   41篇
  2000年   44篇
  1999年   56篇
  1998年   50篇
  1997年   30篇
  1996年   38篇
  1995年   50篇
  1994年   20篇
  1993年   36篇
  1992年   21篇
  1991年   21篇
  1990年   24篇
  1989年   13篇
  1988年   15篇
  1987年   16篇
  1986年   19篇
  1985年   19篇
  1984年   21篇
  1983年   20篇
  1982年   22篇
  1981年   10篇
  1979年   10篇
  1978年   14篇
  1977年   19篇
  1976年   9篇
  1975年   10篇
  1974年   11篇
  1971年   6篇
排序方式: 共有5139条查询结果,搜索用时 593 毫秒
311.
Vertebrates produce various chondroitin sulfate proteoglycans (CSPGs) that are important structural components of cartilage and other connective tissues. CSPGs also contribute to the regulation of more specialized processes such as neurogenesis and angiogenesis. Although many aspects of CSPGs have been studied extensively, little is known of where the CS chains are attached on the core proteins and so far, only a limited number of CSPGs have been identified. Obtaining global information on glycan structures and attachment sites would contribute to our understanding of the complex proteoglycan structures and may also assist in assigning CSPG specific functions. In the present work, we have developed a glycoproteomics approach that characterizes CS linkage regions, attachment sites, and identities of core proteins. CSPGs were enriched from human urine and cerebrospinal fluid samples by strong-anion-exchange chromatography, digested with chondroitinase ABC, a specific CS-lyase used to reduce the CS chain lengths and subsequently analyzed by nLC-MS/MS with a novel glycopeptide search algorithm. The protocol enabled the identification of 13 novel CSPGs, in addition to 13 previously established CSPGs, demonstrating that this approach can be routinely used to characterize CSPGs in complex human samples. Surprisingly, five of the identified CSPGs are traditionally defined as prohormones (cholecystokinin, chromogranin A, neuropeptide W, secretogranin-1, and secretogranin-3), typically stored and secreted from granules of endocrine cells. We hypothesized that the CS side chain may influence the assembly and structural organization of secretory granules and applied surface plasmon resonance spectroscopy to show that CS actually promotes the assembly of chromogranin A core proteins in vitro. This activity required mild acidic pH and suggests that the CS-side chains may also influence the self-assembly of chromogranin A in vivo giving a possible explanation to previous observations that chromogranin A has an inherent property to assemble in the acidic milieu of secretory granules.Chondroitin sulfates (CS)1 are complex polysaccharides present at cell surfaces and in extracellular matrices. The polysaccharides belong to a subclass of glycosaminoglycans (GAGs) and are covalently linked to various core proteins to form CS-proteoglycans (CSPGs), each with differences in the protein structures and/or numbers of CS side chains. Apart from their structural role in cartilage, CSPGs contribute to the regulation of a diverse set of biological processes such as neurogenesis, growth factor signaling, angiogenesis, and morphogenesis (15). Although the molecular basis of CSPGs functions remains elusive, accumulating evidence suggests that the underlying activities relate to selective ligand binding to discrete structural variants of the polysaccharides. Thus, the current strategy for understanding the biological role of CSPGs aims to identify selective CS polysaccharide–ligand interactions. However, information on the number of CS-chains and their specific attachment site(s) on any given core protein is often scarce which limits our functional understanding of CSPGs.The biosynthesis of GAGs occurs in the endoplasmic reticulum and Golgi compartments and is initiated by the enzymatic addition of a beta-linked xylose (Xyl) to a Ser residue of the core protein. The sequential addition of two galactose residues (Gal) and a glucuronic acid (GlcA) onto the growing saccharide chain completes the formation of a tetrasaccharide linkage region (GlcAβ3Galβ3Galβ4XylβSer). This part of the biosynthesis is the same for CS and heparan sulfate (HS). However, for CS the biosynthesis continues with the addition of an N-acetylgalactosamine (GalNAcβ3), whereas HS biosynthesis continues with the addition of an N-acetylglucosamine (GlcNAcα4) (6). The CS-chains are thereafter elongated through the addition of repeating units of GlcA and GalNAc and are further modified by the addition of specifically positioned sulfate groups (7). Certain features of the core protein seem to influence if a certain Ser residue is selected for GAG attachment and whether CS or HS will be synthesized, but the selection mechanism is largely unknown. Sequence analysis of previously known GAG-substituted core proteins reveals that the glycosylated serine residues are usually flanked by a glycine residue (-SG-), and are associated with a cluster of acidic residues in close proximity (8). This motif may assist in the prediction of potential GAG-sites of core proteins; however, the use of such strategy is ambiguous because proteoglycans may also contain unoccupied motifs or motifs that are occasionally occupied (9).Glycoproteomics strategies have recently appeared that provide site-specific information of N- and O-glycans. Such strategies are typically based on a specific enrichment of glycopeptides and a subsequent analysis with nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) (10). By further developing this concept for proteoglycans (11), we have now analyzed CSPG linkage region glycopeptides of human samples, which enabled us to identify 13 novel human CSPGs in addition to 13 already established CSPGs. Urine and cerebrospinal fluid (CSF) samples were trypsinized and CS glycopeptides were enriched using strong anion exchange (SAX) chromatography. The CS chains were depolymerized with chondroitinase ABC, generating free disaccharides and a residual hexameric structure composed of the linkage region and a GlcA-GalNAc disaccharide dehydrated on the terminal GlcA residue (12). MS/MS analysis provided the combined sequencing of the residual hexasaccharide and of the core peptide.  相似文献   
312.
Very high ethanol tolerance is a distinctive trait of the yeast Saccharomyces cerevisiae with notable ecological and industrial importance. Although many genes have been shown to be required for moderate ethanol tolerance (i.e., 6 to 12%) in laboratory strains, little is known of the much higher ethanol tolerance (i.e., 16 to 20%) in natural and industrial strains. We have analyzed the genetic basis of very high ethanol tolerance in a Brazilian bioethanol production strain by genetic mapping with laboratory strains containing artificially inserted oligonucleotide markers. The first locus contained the ura3Δ0 mutation of the laboratory strain as the causative mutation. Analysis of other auxotrophies also revealed significant linkage for LYS2, LEU2, HIS3, and MET15. Tolerance to only very high ethanol concentrations was reduced by auxotrophies, while the effect was reversed at lower concentrations. Evaluation of other stress conditions showed that the link with auxotrophy is dependent on the type of stress and the type of auxotrophy. When the concentration of the auxotrophic nutrient is close to that limiting growth, more stress factors can inhibit growth of an auxotrophic strain. We show that very high ethanol concentrations inhibit the uptake of leucine more than that of uracil, but the 500-fold-lower uracil uptake activity may explain the strong linkage between uracil auxotrophy and ethanol sensitivity compared to leucine auxotrophy. Since very high concentrations of ethanol inhibit the uptake of auxotrophic nutrients, the active uptake of scarce nutrients may be a major limiting factor for growth under conditions of ethanol stress.  相似文献   
313.
314.
315.
Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS), associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system.  相似文献   
316.
ObjectivesThe aim of this study was to investigate to what extent 9 to 11 year old children participating in a specific sport already exhibit a specific anthropometric, physical fitness and motor coordination profile, in line with the requirements of that particular sport. In addition, the profiles in children with a different training volume were compared and possible differences in training hours per week between children from a low, moderate, and high level of physical fitness and motor coordination were investigated.DiscussionThe study showed that in general, children at a young age do not exhibit sport-specific characteristics, except in children with a high training volume. It is possible that on the one hand, children have not spent enough time yet in their sport to develop sport-specific qualities. On the other hand, it could be possible that they do not take individual qualities into account when choosing a sport.  相似文献   
317.
Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with Pi fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with Pi fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased Pi supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and Pi-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by Pi fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and Pi-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area.  相似文献   
318.
319.
Migratory birds have been suggested to contribute to long-distance dispersal of antimicrobial resistant bacteria, but tests of this hypothesis are lacking. In this study we determined resistance profiles and genotypes of ESBL-producing bacteria in randomly selected Escherichia coli from Franklin´s gulls (Leucophaeus pipixcan) at breeding sites in Canada and compared with similar data from the gulls'' wintering grounds in Chile. Resistant E. coli phenotypes were common, most notably to ampicillin (30.1%) and cefadroxil (15.1%). Furthermore, 17.0% of the gulls in Canada carried ESBL producing bacteria, which is higher than reported from human datasets from the same country. However, compared to gulls sampled in Chile (30.1%) the prevalence of ESBL was much lower. The dominant ESBL variants in Canada were bla CTX-M-14 and bla CTX-M-15 and differed in proportions to the data from Chile. We hypothesize that the observed differences in ESBL variants are more likely linked to recent exposure to bacteria from anthropogenic sources, suggesting high local dissemination of resistant bacteria both at breeding and non-breeding times rather than a significant trans-hemispheric exchange through migrating birds.  相似文献   
320.
Type 2 diabetes (T2D) occurs when there is insufficient insulin release to control blood glucose, due to insulin resistance and impaired β-cell function. The GPR39 receptor is expressed in metabolic tissues including pancreatic β-cells and has been proposed as a T2D target. Specifically, GPR39 agonists might improve β-cell function leading to more adequate and sustained insulin release and glucose control. The present study aimed to test the hypothesis that GPR39 agonism would improve glucose stimulated insulin secretion in vivo. A high throughput screen, followed by a medicinal chemistry program, identified three novel potent Zn2+ modulated GPR39 agonists. These agonists were evaluated in acute rodent glucose tolerance tests. The results showed a lack of glucose lowering and insulinotropic effects not only in lean mice, but also in diet-induced obese (DIO) mice and Zucker fatty rats. It is concluded that Zn2+ modulated GPR39 agonists do not acutely stimulate insulin release in rodents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号