首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4856篇
  免费   352篇
  2023年   27篇
  2022年   36篇
  2021年   81篇
  2020年   63篇
  2019年   60篇
  2018年   72篇
  2017年   80篇
  2016年   115篇
  2015年   244篇
  2014年   267篇
  2013年   315篇
  2012年   435篇
  2011年   382篇
  2010年   232篇
  2009年   207篇
  2008年   314篇
  2007年   316篇
  2006年   308篇
  2005年   238篇
  2004年   228篇
  2003年   229篇
  2002年   237篇
  2001年   43篇
  2000年   45篇
  1999年   58篇
  1998年   51篇
  1997年   32篇
  1996年   36篇
  1995年   49篇
  1994年   21篇
  1993年   35篇
  1992年   21篇
  1991年   22篇
  1990年   24篇
  1989年   14篇
  1988年   20篇
  1987年   16篇
  1986年   21篇
  1985年   18篇
  1984年   24篇
  1983年   20篇
  1982年   23篇
  1981年   10篇
  1979年   12篇
  1978年   14篇
  1977年   21篇
  1976年   10篇
  1975年   11篇
  1974年   12篇
  1971年   6篇
排序方式: 共有5208条查询结果,搜索用时 421 毫秒
131.
Breath tests based on the administration of a 13C-labeled drug and subsequent monitoring of 13CO2 in the breath (quantified as DOB – delta over baseline) liberated from the drug during hepatic CPY-dependent detoxification are important tools in liver function diagnostics. The capability of such breath tests to reliably indicate hepatic CYP performance is limited by the fact that 13CO2 is not exclusively exhaled but also exchanged with other compartments of the body. In order to assess this bias caused by variations of individual systemic CO2 kinetics we administered intravenously the test drug 13C-methacetin to 25 clinically liver-healthy individuals and monitored progress curves of DOB and the plasma concentration of 13C-methacetin. Applying compartment modelling we estimated for each individual a set of kinetic parameters characterizing the time-dependent exchange of the drug and of CO2 with the liver and non-hepatic body compartments. This analysis revealed that individual variations in the kinetics of CO2 may account for up to 30% deviation of DOB curve parameters from their mean at otherwise identical 13C-methacetin metabolization rates. In order to correct for this bias we introduced a novel detoxification score which ideally should be assessed from the DOB curve of a 2-step test (“2DOB”) which is initialized with the injection of a standard dose of 13C-labeled bicarbonate (in order to provide information on the actual CO2 status of the individual) followed by injection of the 13C-labeled test drug (the common procedure). Computer simulations suggest that the predictive power of the proposed 2DOB breath test to reliably quantity the CYP-specific hepatic detoxification activity should be significantly higher compared to the conventional breath test.  相似文献   
132.
We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth’s measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today’s young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur “slow” feedbacks and eventual warming of 3–4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth’s energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.  相似文献   
133.
This study investigated whether alterations in environmental conditions would induce the formation of small colony variant phenotypes (SCV) with associated changes in cell morphology and ultra-structure in S. aureus, s. epidermidis, and S. lugdunensis. Wild-type clinical isolates were exposed to low temperature (4°C), antibiotic stress (penicillin G and vancomycin; 0-10,000 µg mL-1), pH stress (pH 3-9) and osmotic challenge (NaCl concentrations of 0-20%). Changes in cell diameter, cell-wall thickness, and population distribution changes (n ≥ 300) were assessed via scanning and transmission electron microscopy (SEM and TEM), and compared to control populations. Our analyses found that prolonged exposure to all treatments resulted in the subsequent formation of SCV phenotypes. Observed SCVs manifested as minute colonies with reduced haemolysis and pigmentation (NaCl, pH and 4°C treatments), or complete lack thereof (antibiotic treatments). SEM comparison analyses revealed significantly smaller cell sizes for SCV populations except in S. aureus and S. epidermidis 10% NaCl, and S. epidermidis 4°C (p<0.05). Shifts in population distribution patterns were also observed with distinct sub-populations of smaller cells appearing for S. epidermidis, and S. lugdunensis. TEM analyses revealed significantly thicker cell-walls in all treatments and species except S. lugdunensis exposed to 4°C. These findings suggest that staphylococci adapted to environmental stresses by altering their cell size and wall thickness which could represent the formation of altered phenotypes which facilitate survival under harsh conditions. The phenotypic response was governed by the type of prevailing environmental stress regime leading to appropriate alterations in ultra-structure and size, suggesting downstream changes in gene expression, the proteome, and metabolome.  相似文献   
134.
A panel of geochemical techniques is used here to investigate the taphonomy of fossil feathers preserved in association with the skeleton of the Jurassic theropod Anchiornis huxleyi. Extant feathers were analysed in parallel to test whether the soft tissues morphologically preserved in the fossil also exhibit a high degree of chemical preservation. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) indicate that clays and iron oxide pseudomorphs occur in the surrounding sediment and also reveal the preservation of melanosome-like microbodies in the fossil. Carbon gradient along a depth profile and co-occurrence of carbon and sulphur are shown in the fossil by elastic backscattering (EBS) and particle-induced x-ray emission (PIXE), which are promising techniques for the elemental analysis of fossil soft tissues. The molecular composition of modern and fossil soft tissues was assessed from micro-attenuated total reflectance fourier transform infrared spectroscopy (micro-ATR FTIR), solid-state 13C nuclear magnetic resonance (CP-MAS 13C NMR) and pyrolysis gas chromatography mass spectrometry in the presence of TMAH (TMAH-Py-GC-MS). Results indicate that the proteinaceous material that comprises the modern feathers is not present in the fossil feathers. The fossil feathers and the embedding sediment exhibit a highly aliphatic character. However, substantial differences exist between these samples, revealing that the organic matter of the fossil feathers is, at least partially, derived from original constituents of the feathers. Our results suggest that, despite the morphological preservation of Anchiornis feathers, original proteins, that is keratin, were probably not preserved in the 160-myr-old feathers.  相似文献   
135.
Journal of Mathematical Biology - A set of axioms is formulated characterizing ecologically plausible community dynamics. Using these axioms, it is proved that the transients following an invasion...  相似文献   
136.
Sarcophagidae is one of the most species-rich families within the superfamily Oestroidea. This diversity is usually represented by three lineages: Miltogramminae, Paramacronychiinae and Sarcophaginae. Historically, the phylogenetic relationships among these lineages have been elusive, due to poorly supported hypotheses or small taxon sets, or both. This study provides a dramatic increase in molecular data, more balanced sampling of all three lineages from all biogeographical regions and a reassessment of morphological characters using scanning electron microscopy in the most comprehensive assessment of subfamily-level phylogeny in Sarcophagidae to date. This analysis of the largest molecular dataset ever produced for a phylogenetic analysis of a fly lineage, with 950 loci from anchored hybrid enrichment comprising 435 930 bp from 101 species, revealed Paramacronychiinae as sister to Miltogramminae, not to Sarcophaginae, as suggested by adult morphology. Maximum likelihood analysis produced a well-supported topology, with 91% of the nodes receiving strong bootstrap proportions (> 97%). In contrast to the molecular data, three out of nine morphological characters studied point to a sister-group relationship of (Sarcophaginae + Paramacronychiinae) and the remaining six characters are either silent on subfamily relationships or in need of further study. Re-examination of morphological structures provides new insights into the evolution of male genitalic traits within Sarcophagidae and highlights their convergence producing conflicting phylogenetic signal. Our phylogeny reconciles older and widely used systems of classification with tree-based thinking and sets up a classification of flesh flies that is more aligned with their evolutionary history.  相似文献   
137.
During evolution, sponges (Porifera) have honed the genetic toolbox and biosynthetic mechanisms for the fabrication of siliceous skeletal components (spicules). Spicules carry a protein scaffold embedded within biogenic silica (biosilica) and feature an amazing range of optical, structural, and mechanical properties. Thus, it is tempting to explore the low-energy synthetic pathways of spiculogenesis for the fabrication of innovative hybrid materials. In this synthetic biology approach, the uptake of multifunctional nonbiogenic nanoparticles (fluorescent, superparamagnetic) by spicule-forming cells of bioreactor-cultivated sponge primmorphs provides access to spiculogenesis. The ingested nanoparticles were detected within intracellular vesicles resembling silicasomes (silica-rich cellular compartments) and as cytosolic clusters where they lent primmorphs fluorescent/magnetic properties. During spiculogenesis, the nanoparticles initially formed an incomplete layer around juvenile, intracellular spicules. In the mature, extracellular spicules the nanoparticles were densely arranged as a surface layer that rendered the resulting composite fluorescent and magnetic. By branching off the conventional route of solid-state materials synthesis under harsh conditions, a new pathway has been opened to a versatile platform that allows adding functionalities to growing spicules as templates in living cells, using nonbiogenic nanoscale building blocks with multiple functionalities. The magnet-assisted alignment renders this composite with its fluorescent/magnetic properties potentially suitable for application in biooptoelectronics and microelectronics (e.g., microscale on-chip waveguides for applications of optical detection and sensing).  相似文献   
138.
139.
140.
Neuropeptide galanin and its three receptors, galanin receptor type 1–galanin receptor type 3, are known to be involved in the regulation of numerous psychological processes, including depression. Studies have suggested that stimulation of galanin receptor type 2 (GalR2) leads to attenuation of the depression-like behavior in animals. However, due to the lack of highly selective galanin subtype specific ligands the involvement of different receptors in depression-like behavior is yet not fully known. In the present study we introduce a novel GalR2 selective agonist and demonstrate its ability to produce actions consistent with theorized GalR2 functions and analogous to that of the anti-depressant, imipramine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号