首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   16篇
  国内免费   2篇
  2023年   3篇
  2022年   3篇
  2021年   9篇
  2020年   4篇
  2019年   8篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   6篇
  2014年   5篇
  2013年   7篇
  2012年   13篇
  2011年   17篇
  2010年   4篇
  2009年   6篇
  2008年   17篇
  2007年   8篇
  2006年   8篇
  2005年   9篇
  2004年   7篇
  2003年   14篇
  2002年   11篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
排序方式: 共有185条查询结果,搜索用时 31 毫秒
131.
Coronary vessel development requires transfer of mesothelial cells to the heart surface to form the epicardium where some cells subsequently undergo epithelial-mesenchymal transformation (EMT) and invade the subepicardial matrix. Tgfbr3−/− mice die due to failed coronary vessel formation associated with decreased epicardial cell invasion but the mediators downstream of TGFβR3 are not well described. TGFβR3-dependent endocardial EMT stimulated by either TGFβ2 or BMP-2 requires activation of the Par6/Smurf1/RhoA 1pathway where Activin Receptor Like Kinase (ALK5) signals Par6 to act downstream of TGFβ to recruit Smurf1 to target RhoA for degradation to regulate apical-basal polarity and tight junction dissolution. Here we asked if this pathway was operant in epicardial cells and if TGFβR3 was required to access this pathway. Targeting of ALK5 in Tgfbr3+/+ cells inhibited loss of epithelial character and invasion. Overexpression of wild-type (wt) Par6, but not dominant negative (dn) Par6, induced EMT and invasion while targeting Par6 by siRNA inhibited EMT and invasion. Overexpression of Smurf1 and dnRhoA induced loss of epithelial character and invasion. Targeting of Smurf1 by siRNA or overexpression of constitutively active (ca) RhoA inhibited EMT and invasion. In Tgfbr3−/− epicardial cells which have a decreased ability to invade collagen gels in response to TGFβ2, overexpression of wtPar6, Smurf1, or dnRhoA had a diminished ability to induce invasion. Overexpression of TGFβR3 in Tgfbr3−/− cells, followed by siRNA targeting of Par6 or Smurf1, diminished the ability of TGFβR3 to rescue invasion demonstrating that the Par6/Smurf1/RhoA pathway is activated downstream of TGFβR3 in epicardial cells.  相似文献   
132.
While soluble fms-like tyrosine kinase-1 (sFlt-1) and endothelin-1 (ET-1) have been implicated in the pathogenesis of preeclampsia (PE), the mechanisms whereby increased sFlt-1 leads to enhanced ET-1 production and hypertension remain unclear. It is well documented that nitric oxide (NO) production is reduced in PE; however, whether a reduction in NO synthesis plays a role in increasing ET-1 and blood pressure in response to chronic increases in plasma sFlt-1 remains unclear. The purpose of this study was to determine the role of reduced NO synthesis in the increase in blood pressure and ET-1 in response to sFlt-1 in pregnant rats. sFlt-1 was infused into normal pregnant (NP) Sprague-Dawley rats (3.7 μg·kg(-1)·day(-1) for 6 days beginning on day 13 of gestation) treated with the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (100 mg/l for 4 days) or supplemented with 2% L-Arg (in drinking water for 6 days beginning on day 15 of gestation). Infusion of sFlt-1 into NP rats significantly elevated mean arterial pressure compared with control NP rats: 116 ± 2 vs. 103 ± 1 mmHg (P < 0.05). NO synthase inhibition had no effect on the blood pressure response in sFlt-1 hypertensive pregnant rats (121 ± 3 vs. 116 ± 2 mmHg), while it significantly increased mean arterial pressure in NP rats (128 ± 4 mmHg, P < 0.05). In addition, NO production was reduced ~70% in isolated glomeruli from sFlt-1 hypertensive pregnant rats compared with NP rats (P < 0.05). Furthermore, prepro-ET-1 in the renal cortex was increased ~3.5-fold in sFlt-1 hypertensive pregnant rats compared with NP rats. Supplementation with L-Arg decreased the sFlt-1 hypertension (109 ± 3 mmHg, P < 0.05) but had no effect on the blood pressure response in NP rats (109 ± 3 mmHg) and abolished the enhanced sFlt-1-induced renal cortical prepro-ET expression. In conclusion, a reduction in NO synthesis may play an important role in the enhanced ET-1 production in response to sFlt-1 hypertension in pregnant rats.  相似文献   
133.
EBV transformation of human B cells in vitro results in establishment of immortalized cell lines (lymphoblastoid cell lines (LCL)) that express viral transformation-associated latent genes and exhibit a fixed, lymphoblastoid phenotype. In this report, we show that CD4(+) T cells can modify the differentiation state of EBV-transformed LCL. Coculture of LCL with EBV-specific CD4(+) T cells resulted in an altered phenotype, characterized by elevated CD38 expression and decreased proliferation rate. Relative to control LCL, the cocultured LCL were markedly less susceptible to lysis by EBV-specific CD8(+) CTL. In contrast, CD4(+) T cell-induced differentiation of LCL did not diminish sensitivity of LCL to lysis by CD8(+) CTL specific for an exogenously loaded peptide Ag or lysis by alloreactive CD8(+) CTL, suggesting that differentiation is not associated with intrinsic resistance to CD8(+) T cell cytotoxicity and that evasion of lysis is confined to EBV-specific CTL responses. CD4(+) T cell-induced differentiation of LCL and concomitant resistance of LCL to lysis by EBV-specific CD8(+) CTL were associated with reduced expression of viral latent genes. Finally, transwell cocultures, in which direct LCL-CD4(+) T cell contact was prevented, indicated a major role for CD4(+) T cell cytokines in the differentiation of LCL.  相似文献   
134.
Strains of Thermus thermophilus accumulate primarily trehalose and smaller amounts of mannosylglycerate in response to salt stress in yeast extract-containing media (O. C. Nunes, C. M. Manaia, M. S. da Costa, and H. Santos, Appl. Environ. Microbiol. 61:2351-2357, 1995). A 2.4-kbp DNA fragment from T. thermophilus strain RQ-1 carrying otsA (encoding trehalose-phosphate synthase [TPS]), otsB (encoding trehalose-phosphate phosphatase [TPP]), and a short sequence of the 5' end of treS (trehalose synthase [TreS]) was cloned from a gene library. The sequences of the three genes (including treS) were amplified by PCR and sequenced, revealing that the genes were structurally linked. To understand the role of trehalose during salt stress in T. thermophilus RQ-1, we constructed a mutant, designated RQ-1M6, in which TPS (otsA) and TPP (otsB) genes were disrupted by gene replacement. Mutant RQ-1M6 accumulated trehalose and mannosylglycerate in a medium containing yeast extract and NaCl. However, growth in a defined medium (without yeast extract, known to contain trehalose) containing NaCl led to the accumulation of mannosylglycerate but not trehalose. The deletion of otsA and otsB reduced the ability to grow in defined salt-containing medium, with the maximum salinity being 5% NaCl for RQ-1 and 3% NaCl for RQ-1M6. The lower salt tolerance observed in the mutant was relieved by the addition of trehalose to the growth media. In contrast to trehalose, the addition of glycine betaine, mannosylglycerate, maltose, and glucose to the growth medium did not allow the mutant to grow at higher salinities. The results presented here provide crucial evidence for the importance of the TPS/TPP pathway for the synthesis and accumulation of trehalose and the decisive contribution of this disaccharide to osmotic adaptation in T. thermophilus RQ-1.  相似文献   
135.
136.
Reduction of uterine perfusion pressure (RUPP) during late pregnancy has been suggested to trigger increases in renal vascular resistance and lead to hypertension of pregnancy. We investigated whether the increased renal vascular resistance associated with RUPP in late pregnancy reflects increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) and contraction of renal arterial smooth muscle. Single smooth muscle cells were isolated from renal interlobular arteries of normal pregnant Sprague-Dawley rats and a rat model of RUPP during late pregnancy. The cells were loaded with fura 2 and both cell length and [Ca(2+)](i) were measured. In cells of normal pregnant rats incubated in Hanks' solution (1 mM Ca(2+)), ANG II (10(-7) M) caused an initial increase in [Ca(2+)](i) to 414 +/- 13 nM, a maintained increase to 149 +/- 8 nM, and 21 +/- 1% cell contraction. In RUPP rats, the initial ANG II-induced [Ca(2+)](i) (431 +/- 18 nM) was not different from pregnant rats, but both the maintained [Ca(2+)](i) (225 +/- 9 nM) and cell contraction (48 +/- 2%) were increased. Membrane depolarization by 51 mM KCl and the Ca(2+) channel agonist BAY K 8644 (10(-6) M), which stimulate Ca(2+) entry from the extracellular space, caused maintained increases in [Ca(2+)](i) and cell contraction that were greater in RUPP rats than control pregnant rats. In Ca(2+)-free (2 mM EGTA) Hanks' solution, the ANG II- and caffeine (10 mM)-induced [Ca(2+)](i) transient and cell contraction were not different between normal pregnant and RUPP rats, suggesting no difference in Ca(2+) release from the intracellular stores. The enhanced maintained ANG II-, KCl- and BAY K 8644-induced [Ca(2+)](i) and cell contraction in RUPP rats compared with normal pregnant rats suggest enhanced Ca(2+) entry mechanisms of smooth muscle contraction in resistance renal arteries and may explain the increased renal vascular resistance associated with hypertension of pregnancy.  相似文献   
137.
Cytochrome P450 2D6 (CYP2D6) is an important human drug-metabolizing enzyme that exhibits a marked genetic polymorphism. Numerous CYP2D6 alleles have been characterized at a functional level, although the consequences for expression and/or catalytic activity of a substantial number of rare variants remain to be investigated. One such allele, CYP2D6*31, is characterized by mutations encoding three amino acid substitutions: Arg296Cys, Arg440His and Ser486Thr. The identification of this allele in an individual with an apparent in vivo poor metabolizer phenotype prompted us to analyze the functional consequence of these substitutions on enzyme activity using yeast as a heterologous expression system. We demonstrated that the Arg440His substitution, alone or in combination with Arg296Cys and/or Ser486Thr, altered the respective kinetic parameters [Km (microM) and kcat (min(-1))] of debrisoquine 4-hydroxylation (wild-type, 25; 0.92; variants, 43-68; 0.05-0.11) and dextromethorphan O-demethylation (wild-type, 1; 4.72; variants, 12-23; 0.64-1.43), such that their specificity constants (kcat/Km) were decreased by more than 95% compared to those observed with the wild-type enzyme. The rates of oxidation of rac-metoprolol at single substrate concentrations of 40 and 400 microM were also markedly decreased by approximately 90% with each CYP2D6 variant containing the Arg440His substitution. These in vitro data confirm that the CYP2D6*31 allele encodes an enzyme with a severely impaired but residual catalytic activity and, furthermore, that the Arg440His exchange alone is the inactivating mutation. A homology model of CYP2D6 based on the crystal structure of rabbit CYP2C5 locates Arg440 on the proximal surface of the protein. Docking the structure of the FMN domain of human cytochrome P450 reductase to the CYP2D6 model suggests that Arg440 is a key member of a cluster of basic amino acid residues important for reductase binding.  相似文献   
138.
Family-base societies are frequently faced with the conundrum of balancing the competing reproductive interests of closely related group members. How this is accomplished is the subject of considerable current research, and is epitomized in the complexities of a bizarre species of woodpecker, common in California's oak woodlands.  相似文献   
139.
The central neuroendocrine system in the Drosophila brain includes two centers, the pars intercerebralis (PI) and pars lateralis (PL). The PI and PL contain neurosecretory cells (NSCs) which project their axons to the ring gland, a complex of peripheral endocrine glands flanking the aorta. We present here a developmental and genetic study of the PI and PL. The PI and PL are derived from adjacent neurectodermal placodes in the dorso-medial head. The placodes invaginate during late embryogenesis and become attached to the brain primordium. The PI placode and its derivatives express the homeobox gene Dchx1 and can be followed until the late pupal stage. NSCs labeled by the expression of Drosophila insulin-like peptide (Dilp), FMRF, and myomodulin form part of the Dchx1 expressing PI domain. NSCs of the PL can be followed throughout development by their expression of the adhesion molecule FasII. Decapentaplegic (Dpp), secreted along the dorsal midline of the early embryo, inhibits the formation of the PI and PL placodes; loss of the signal results in an unpaired, enlarged placodeal ectoderm. The other early activated signaling pathway, EGFR, is positively required for the maintenance of the PI placode. Of the dorso-medially expressed head gap genes, only tailless (tll) is required for the specification of the PI. Absence of the corpora cardiaca, the endocrine gland innervated by neurosecretory cells of the PI and PL, does not affect the formation of the PI/PL, indicating that inductive stimuli from their target tissue are not essential for early PI/PL development.  相似文献   
140.
International Journal of Primatology - Research on captive and wild great apes has established that they employ large repertoires of intentional gestural signals to achieve desired goals. However,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号