首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5029篇
  免费   375篇
  2022年   51篇
  2021年   119篇
  2020年   53篇
  2019年   72篇
  2018年   73篇
  2017年   64篇
  2016年   118篇
  2015年   209篇
  2014年   257篇
  2013年   274篇
  2012年   422篇
  2011年   390篇
  2010年   227篇
  2009年   207篇
  2008年   334篇
  2007年   295篇
  2006年   311篇
  2005年   262篇
  2004年   288篇
  2003年   262篇
  2002年   241篇
  2001年   41篇
  2000年   28篇
  1999年   43篇
  1998年   60篇
  1997年   43篇
  1996年   32篇
  1995年   47篇
  1994年   27篇
  1993年   18篇
  1992年   26篇
  1991年   31篇
  1990年   22篇
  1989年   17篇
  1988年   21篇
  1987年   20篇
  1986年   16篇
  1985年   25篇
  1984年   29篇
  1983年   27篇
  1982年   23篇
  1981年   35篇
  1980年   33篇
  1979年   16篇
  1978年   20篇
  1977年   20篇
  1976年   22篇
  1974年   19篇
  1973年   18篇
  1970年   16篇
排序方式: 共有5404条查询结果,搜索用时 31 毫秒
61.
Summary A number of published data suggest a variable stoichiometry between the rates of cellular potassium uptake and net sodium transport (J Na) across the urinary bladder of the toad. This problem was examined by simultaneously studying the intracellular chemical activity of potassium (a K) with open-tip K+-selective microelectrodes and micropipets, and monitoringJ Na by measuring the short-circuit current (SCC). When bathed in the short-circuited state with solutions containing ana K of 2.7mm, the mean ±sem values for intracellulara K were 43±0.6mm.Ouabain, at a concentration of 10–2 m, reduced intracellulara K by 56–67% and SCC by 96–100%. At 5×10–4 m, ouabain reversibly reduced intracellulara K by 40–55%, and SCC by 63–68%; the inhibition of SCC was only partly reversible during the period of observation.Removal of external potassium reduced intracellulara K by 69–80% and SCC by 51–76%. Restoration of external potassium entirely returned intracellulara K to its control value, but only partially reversed the inhibition of SCC during the period of study. Furthermore, recovery ofa K began 19–43 min before that of SCC; recovery ofa K was 90–97% complete before any increase in SCC could be measured. Although other interpretations are possible, the simplest interpretation of the data is that the processes responsible for potassium accumulation and transepithelial sodium transport are not identical. We propose the existence of a separate transfer mechanism at the basolateral cell membrane, responsible for accumulating intracellular potassium, and not directly coupled to active sodium transport.  相似文献   
62.
The protein chemical characterization of the amino-terminal tryptic peptide of actin from different bovine tissues shows that at least six different actin structural genes are expressed in this mammal.Unique amirio acid sequences are found for actin from skeletal muscle, for actin from heart muscle, for two different actin species from smooth muscle, and for two different actin species typical of non-muscle tissues such as brain and thymus. The presence of more than one actin species in the same tissue (e.g. nonmuscle tissues and smooth muscles) is demonstrated by different amino-terminal peptides which, however, are closely related. The actins from the sarcomeric muscles (e.g. skeletal muscle and heart muscle) show unique but extremely similar amino-terminal peptides. A limited comparison of bovine and avian actins involving smooth and skeletal muscles emphasizes that among higher vertebrates actin divergence involves tissue rather than species specificity.For the lower eukaryotic organism Physarum polycephalum a single actin amino-terminal peptide is found, indicating that only one actin species is present during the plasmodial stage. The amino acid sequence of this peptide although unique reveals a high degree of homology with the corresponding mammalian cytoplasmic actin peptides.Different actin extraction and purification procedures have been compared by the relative yields of the different amino-terminal peptides. The results indicate that the various actin species obtained by the current purification procedures are a true reflection of the actual actins present in the tissue. In addition we compare the resolution provided by either isoelectric focusing analysis of different actins or by the protein chemical characterization of the amino-terminal peptides of different actins. We show that the latter procedure is more suitable for recording changes in actin expression during evolution and differentiation.  相似文献   
63.
Choleragen exerts its effect on cells through activation of adenylate cyclase. Choleragen initially interacts with cells through binding of the B subunit of the toxin to the ganglioside GM1 on the cell surface. Subsequent events are less clear. Patching or capping of toxin on the cell surface may be an obligatory step in choleragen action. Studies in cell-free systems have demonstrated that activation of adenylate cyclase by choleragen requires NAD. In addition to NAD, requirements have been observed for ATP, GTP, and calcium-dependent regulatory protein. GTP also is required for the expression of choleragen-activated adenylate cyclase. In preparations from turkey erythrocytes, choleragen appears to inhibit an isoproterenol-stimulated GTPase. It has been postulated that by decreasing the activity of a specific GTPase, choleragen would stabilize a GTP-adenylate cyclase complex and maintain the cyclase in an activated state. Although the holotoxin is most effective in intact cells, with the A subunit having 1/20th of its activity and the B subunit (choleragenoid) being inactive, in cell-free systems the A subunit, specifically the A1 fragment, is required for adenylate cyclase activation. The B protomer is inactive. Choleragen, the A subunit, or A1 fragment under suitable conditions hydrolyzes NAD to ADP-ribose and nicotinamide (NAD glycohydrolase activity) and catalyzes the transfer of the ADP-ribose moiety of NAD to the guandino group of arginine (ADP-ribosyltransferase activity). The NAD glycohydrolase activity is similar to that exhibited by other NAD-dependent bacterial toxins (diphtheria toxin, Pseudomonas exotoxin A), which act by catalyzing the ADP-ribosylation of a specific acceptor protein. If the ADP-ribosylation of arginine is a model for the reaction catalyzed by choleragen in vivo, then arginine is presumably an analog of the amino acid which is ADP-ribosylated in the acceptor protein. It is postulated that choleragen exerts its effects on cells through the NAD-dependent ADP-ribosylation of an arginine or similar amino acid in either the cyclase itself or a regulatory protein of the cyclase system.  相似文献   
64.
Cortical thymocytes of young adult mice were labeled in situ with radioactive DNA precursors. As a result of cell emigration and cell death, total thymic radioactivity decreased within 8 days to 10% or less of that present on day 1. Accumulation of thymic migrants in peripheral lymphoid organs was estimated by computing the net thymus-derived radioactivity in these tissues. Thymic cell death was assessed by comparing values obtained with 125I-UdR to those acquired with 3H-TdR; The results indicate that cortical thymocytes migrate to the spleen, mesenteric lymph node, femurs and intestine; nevertheless, only a small fraction of the activity originally present in the thymus was recovered in these organs; the vast majority of newly formed cortical thymocytes apparently die after a relatively short life span. Exclusive of the fraction which dies in situ, evidence for thymocyte death is seen in bone marrow; however, most migrants appear to terminate in the intestine.  相似文献   
65.
Free Ammonia Inhibition of Algal Photosynthesis in Intensive Cultures   总被引:11,自引:1,他引:10       下载免费PDF全文
The effect of free NH3 inhibition on short-term photosynthesis was investigated in three microalgal species: the freshwater chlorophyte Scenedesmus obliquus, the marine diatom Phaeodactylum tricornutum and the marine chlorophyte Dunaliella tertiolecta. By performing a series of assays at various concentrations of added NH4Cl and culture pH, we demonstrated that the inhibitory compound was free NH3 and that pH played no role in determining the magnitude of inhibition, other than in establishing the degree of dissociation of nontoxic NH4+ to toxic NH3. When corrections were made for pH, all three species displayed the same sigmoidal response curve to free NH3 concentration; 1.2 mM NH3 led to 50% reduction in photoassimilation of 14C. Based on literature values, some marine phytoplankton appear to be significantly more sensitive to free NH3 than were the test species, which are noted for their excellent growth characteristics. However, the combination of low algal biomass and strong pH buffering commonly found in most marine and many freshwater environments probably limits the possibilities for NH3 toxicity to low alkalinity freshwaters and intensive algal cultures in which NH4+ is the main source of N. Such conditions occur commonly in algal wastewater treatment systems.  相似文献   
66.
The in vitro degradation of microtubule-associated protein 2 (MAP-2) and spectrin by the calcium-dependent neutral protease calpain was studied. Five major results are reported. First, MAP-2 isolated from twice-cycled microtubules (2 X MT MAP-2) was extremely sensitive to calpain-induced hydrolysis. Even at an enzyme-to-substrate ratio (wt/wt) of 1:200, 2 X MT MAP-2 was significantly degraded by calpain. Second, MAP-2 purified from the total brain heat-stable fraction (total MAP-2) was significantly more resistant to calpain-induced hydrolysis compared with 2 X MT MAP-2. Third, MAP-2a and MAP-2b were proteolyzed similarly by calpain, although some relative resistance of MAP-2b was observed. Fourth, the presence of calmodulin significantly increased the extent of calpain-induced hydrolysis of the alpha-subunit of spectrin. Fifth, the two neuronal isoforms of brain spectrin (240/235 and 240/235E, referred to as alpha/beta N and alpha/beta E, respectively) showed different sensitivities to calpain. alpha N-spectrin was significantly more sensitive to calpain-induced degradation compared to alpha E-spectrin. Among other things, these results suggest a role for the calpain-induced degradation of MAP-2, as well as spectrin, in such physiological processes as alterations in synaptic efficacy, dendritic remodeling, and in pathological processes associated with neurodegeneration.  相似文献   
67.
Summary Recent whole-cell electrophysiological data concerning the properties of the Ca2+ currents in mouse -cells are fitted by a two-current model of Ca2+ channel kinetics. When the -cell K+ currents are added to this model, only large modifications of the measured Ca2+ currents will reproduce the bursting pattern normally observed in mouse islets. However, when the measured Ca2+ currents are modified only slightly and used in conjunction with a K+ conductance that can be modulated dynamically by ATP concentration, reasonable bursting is obtained. Under these conditions it is the K-ATP conductance, rather than the slow voltage inactivation of the Ca2+ current, that determines the interburst interval. We find that this latter model can be reconciled with experiments that limit the possible periodic variation of the K-ATP conductance and with recent observations of intracellular Ca2+ bursting in isletsThis work was supported in part by NSF grant DIR-90-06104 and the Agricultural Experiment Station of the University of California. P.S. gratefully acknowledges financial support from an NRC Fellowship. We have benefited from numerous conversations with Drs. John Rinzel, Arthur Sherman, Daniel Cook, and Leslie Satin  相似文献   
68.
Phagotrophy and NH4+ regeneration in a three-member microbial food loop   总被引:1,自引:0,他引:1  
In a series of batch experiments we compared the efficiencyof nitrogen regeneration of a two- and three-member microbialfood loop consisting of a mixed bacterial assemblage, a small(3–5 µm) heterotrophic flagellate (Paraphysomonassp.), and a large (7–12 µm) heterotrophic flagellate(Paraphysomonas imperforata). In the two-member system the nitrogenregeneration efficiency for NH4+ (Rn) was 41% and the grossgrowth efficiency (GGE) was 57% during active grazing by thesmall flagellate on bacteria. Regeneration of NH4+ continuedduring the stationary phase so that Rn was 75% after 6 daysincubation. When the larger flagellate was introduced at theend of exponential growth of the smaller grazer in the three-membersystem, initially there was rapid regrowth of bacteria, tyingup 15% of the nitrogen originally in the bacteria. The largerflagellate grazed the smaller one with a GGE of 55%. Total nitrogenregeneration efficiency through exponential growth of the largerflagellate was 73%. Because microbial food loops in naturalwaters are far more complicated and with more grazing stepsthan portrayed in this study, we would expect the bulk of nutrientswithin these systems to be recycled with little transfer tohigher trophic levels.  相似文献   
69.
Sailfin mollies (Poecilia latipinna) display marked interdemic variation in body size. We employed “common-garden” experiments in field enclosures to explore the potential role of environmental factors in determining the interdemic phenotypic variation in growth rate, age at maturity, and size at maturity. The largest single, consistent source of variation for all traits was family identity within populations. Environmental effects acted predominantly through family x environment interactions. There was little evidence for any intrinsic variation among populations once family heterogeneity had been accounted for. In general, when statistically significant differences existed, fish raised in a saltwater pond grew faster than their broodmates raised in a freshwater pond. Both males and females tended to mature at a smaller size and later in the freshwater pond than in the saltwater pond. The effects of the environmental conditions differed among the three years in which we performed these studies. In only one year was there a substantial difference between fish raised under the two environmental conditions. These results indicate that direct environmental effects are not strong enough to account for the differences in body size among natural populations and that intrinsic differences among natural populations are due to different frequency distributions of genotypes that are present in all populations.  相似文献   
70.
Field studies indicate that the influence of environmental factors on growth rate and size and age at maturity in sailfin mollies (Poecilia latipinna) is inconsistent over time and suggest that the marked interdemic variation in male body size in this species is the result of genetic variation. However, the role of specific environmental factors in generating phenotypic variation must be studied under controlled conditions unattainable in nature. We raised newborn sailfin mollies from four populations in laboratory aquaria under all possible combinations of two temperatures, three salinities, and two food levels to examine explicitly the influence of these environmental factors. Males were much less susceptible than females to temperature variation and were generally less plastic than females in terms of all three traits. Members of both sexes matured at larger sizes and at later ages in less saline and in cooler environments. Food levels were not sufficiently different to affect the traits we studied. The effects of temperature and salinity were not synergistic. Males from different populations exhibited different average ages and sizes at maturity, but females did not. The magnitudes of the effects we found were not substantial enough to account for the consistent interdemic differences in male and female body size that have been observed previously. Our results also indicate that no single environmental factor is solely responsible for the environmental effects observed in field experiments on growth and development. These studies, together with other work, indicate that the strongest sources of interdemic variation are genetic differences in males and differences in postmaturation growth and survivorship in females.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号